Research output: Contribution to journal › Article › peer-review
Abstract: The results of a study of the unoccupied electronic states of ultrathin films of bis-carboxyphenyl-phthalide (DCA-DPP) and bis-methylphenyl-phthalide (DM-DPP) up to 8 nm thick are presented. The studies are carried out by total current spectroscopy (TCS) in the energy range from 5 to 20 eV above EF during thermal vacuum deposition of these organic films on the surface of highly ordered pyrolytic graphite (HOPG). The values of Evac relative to EF, i.e., the work function of electrons of the DM-DPP films at a film thickness of 5–8 nm are found to be 4.3 ± 0.1 eV. The values of the work function of electrons of the DCA‑DPP films are found to be 3.7 ± 0.1 eV. The structure of the maxima of unoccupied electronic states of DCA-DPP and DM-DPP films in the studied energy range is established. A comparison of the obtained properties of DCA-DPP and DM-DPP films with the properties of films of molecules of unsubstituted diphenylphthalide (DPP) is presented. Thus, the –CH3 substitution of the DPP molecule has almost no effect on the height of the potential barrier between the film and the HOPG surface, while –COOH substitution of the DPP molecule leads to an increase in the height of the potential barrier between the film and the HOPG substrate surface by 0.5–0.6 eV. Substitution of DPP molecules with –COOH functional groups and, thus, the formation of DCA-DPP molecules lead to a shift of two maxima of the fine structure of the total current spectra located at energies in the range from 5 to 8 eV above EF by about 1 eV towards the lower electron energies.
Original language | English |
---|---|
Pages (from-to) | 362-367 |
Number of pages | 6 |
Journal | Physics of the Solid State |
Volume | 63 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2021 |
ID: 74664186