Standard

Unconditional Convergence for Wavelet Frame Expansions. / Lebedeva, E. A.

In: Journal of Mathematical Sciences (United States), Vol. 234, No. 3, 10.2018, p. 357-361.

Research output: Contribution to journalArticlepeer-review

Harvard

Lebedeva, EA 2018, 'Unconditional Convergence for Wavelet Frame Expansions', Journal of Mathematical Sciences (United States), vol. 234, no. 3, pp. 357-361. https://doi.org/10.1007/s10958-018-4012-9

APA

Lebedeva, E. A. (2018). Unconditional Convergence for Wavelet Frame Expansions. Journal of Mathematical Sciences (United States), 234(3), 357-361. https://doi.org/10.1007/s10958-018-4012-9

Vancouver

Lebedeva EA. Unconditional Convergence for Wavelet Frame Expansions. Journal of Mathematical Sciences (United States). 2018 Oct;234(3):357-361. https://doi.org/10.1007/s10958-018-4012-9

Author

Lebedeva, E. A. / Unconditional Convergence for Wavelet Frame Expansions. In: Journal of Mathematical Sciences (United States). 2018 ; Vol. 234, No. 3. pp. 357-361.

BibTeX

@article{1e8f153a09bb453dad23321d6e463447,
title = "Unconditional Convergence for Wavelet Frame Expansions",
abstract = "Let {ψj,k}(jk)∈ℤ2 and {ψ˜j,k}(jk)∈ℤ2 be dual wavelet frames in L2(ℝ), let η be an even, bounded, decreasing on [0, ∞) function such that∫0∞η(x)log(1+x)dx<∞, and let |ψ(x)|, |ψ˜(x)|≤η(x). Then the series ∑j,k∈ℤ(fψ˜j,k)ψj,k converges unconditionally in Lp(ℝ), 1 < p < ∞.",
author = "Lebedeva, {E. A.}",
note = "Lebedeva, E.A. Unconditional Convergence for Wavelet Frame Expansions. J Math Sci 234, 357–361 (2018). https://doi.org/10.1007/s10958-018-4012-9",
year = "2018",
month = oct,
doi = "10.1007/s10958-018-4012-9",
language = "English",
volume = "234",
pages = "357--361",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "3",

}

RIS

TY - JOUR

T1 - Unconditional Convergence for Wavelet Frame Expansions

AU - Lebedeva, E. A.

N1 - Lebedeva, E.A. Unconditional Convergence for Wavelet Frame Expansions. J Math Sci 234, 357–361 (2018). https://doi.org/10.1007/s10958-018-4012-9

PY - 2018/10

Y1 - 2018/10

N2 - Let {ψj,k}(jk)∈ℤ2 and {ψ˜j,k}(jk)∈ℤ2 be dual wavelet frames in L2(ℝ), let η be an even, bounded, decreasing on [0, ∞) function such that∫0∞η(x)log(1+x)dx<∞, and let |ψ(x)|, |ψ˜(x)|≤η(x). Then the series ∑j,k∈ℤ(fψ˜j,k)ψj,k converges unconditionally in Lp(ℝ), 1 < p < ∞.

AB - Let {ψj,k}(jk)∈ℤ2 and {ψ˜j,k}(jk)∈ℤ2 be dual wavelet frames in L2(ℝ), let η be an even, bounded, decreasing on [0, ∞) function such that∫0∞η(x)log(1+x)dx<∞, and let |ψ(x)|, |ψ˜(x)|≤η(x). Then the series ∑j,k∈ℤ(fψ˜j,k)ψj,k converges unconditionally in Lp(ℝ), 1 < p < ∞.

UR - http://www.scopus.com/inward/record.url?scp=85052739067&partnerID=8YFLogxK

U2 - 10.1007/s10958-018-4012-9

DO - 10.1007/s10958-018-4012-9

M3 - Article

AN - SCOPUS:85052739067

VL - 234

SP - 357

EP - 361

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 3

ER -

ID: 45798275