Research output: Contribution to journal › Article › peer-review
Unconditional Convergence for Wavelet Frame Expansions. / Lebedeva, E. A.
In: Journal of Mathematical Sciences (United States), Vol. 234, No. 3, 10.2018, p. 357-361.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Unconditional Convergence for Wavelet Frame Expansions
AU - Lebedeva, E. A.
N1 - Lebedeva, E.A. Unconditional Convergence for Wavelet Frame Expansions. J Math Sci 234, 357–361 (2018). https://doi.org/10.1007/s10958-018-4012-9
PY - 2018/10
Y1 - 2018/10
N2 - Let {ψj,k}(jk)∈ℤ2 and {ψ˜j,k}(jk)∈ℤ2 be dual wavelet frames in L2(ℝ), let η be an even, bounded, decreasing on [0, ∞) function such that∫0∞η(x)log(1+x)dx<∞, and let |ψ(x)|, |ψ˜(x)|≤η(x). Then the series ∑j,k∈ℤ(fψ˜j,k)ψj,k converges unconditionally in Lp(ℝ), 1 < p < ∞.
AB - Let {ψj,k}(jk)∈ℤ2 and {ψ˜j,k}(jk)∈ℤ2 be dual wavelet frames in L2(ℝ), let η be an even, bounded, decreasing on [0, ∞) function such that∫0∞η(x)log(1+x)dx<∞, and let |ψ(x)|, |ψ˜(x)|≤η(x). Then the series ∑j,k∈ℤ(fψ˜j,k)ψj,k converges unconditionally in Lp(ℝ), 1 < p < ∞.
UR - http://www.scopus.com/inward/record.url?scp=85052739067&partnerID=8YFLogxK
U2 - 10.1007/s10958-018-4012-9
DO - 10.1007/s10958-018-4012-9
M3 - Article
AN - SCOPUS:85052739067
VL - 234
SP - 357
EP - 361
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 3
ER -
ID: 45798275