Standard

Two-Dimensional Singular Splash Pulses. / Zlobina, E. A.; Kiselev, A. P.

In: Journal of Mathematical Sciences (United States), Vol. 252, No. 5, 02.2021, p. 619-623.

Research output: Contribution to journalArticlepeer-review

Harvard

Zlobina, EA & Kiselev, AP 2021, 'Two-Dimensional Singular Splash Pulses', Journal of Mathematical Sciences (United States), vol. 252, no. 5, pp. 619-623. https://doi.org/10.1007/s10958-021-05185-w

APA

Zlobina, E. A., & Kiselev, A. P. (2021). Two-Dimensional Singular Splash Pulses. Journal of Mathematical Sciences (United States), 252(5), 619-623. https://doi.org/10.1007/s10958-021-05185-w

Vancouver

Zlobina EA, Kiselev AP. Two-Dimensional Singular Splash Pulses. Journal of Mathematical Sciences (United States). 2021 Feb;252(5):619-623. https://doi.org/10.1007/s10958-021-05185-w

Author

Zlobina, E. A. ; Kiselev, A. P. / Two-Dimensional Singular Splash Pulses. In: Journal of Mathematical Sciences (United States). 2021 ; Vol. 252, No. 5. pp. 619-623.

BibTeX

@article{77323016b1bf40d6b6a3cd0a3f281654,
title = "Two-Dimensional Singular Splash Pulses",
abstract = "It is proved that a certain simple specification of the 2D Bateman-type complexified solution having a singularity at a running point satisfies the homogeneous wave equation, whereas the respective noncomplexified function does not.",
author = "Zlobina, {E. A.} and Kiselev, {A. P.}",
note = "Publisher Copyright: {\textcopyright} 2021, Springer Science+Business Media, LLC, part of Springer Nature. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.",
year = "2021",
month = feb,
doi = "10.1007/s10958-021-05185-w",
language = "English",
volume = "252",
pages = "619--623",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "5",

}

RIS

TY - JOUR

T1 - Two-Dimensional Singular Splash Pulses

AU - Zlobina, E. A.

AU - Kiselev, A. P.

N1 - Publisher Copyright: © 2021, Springer Science+Business Media, LLC, part of Springer Nature. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.

PY - 2021/2

Y1 - 2021/2

N2 - It is proved that a certain simple specification of the 2D Bateman-type complexified solution having a singularity at a running point satisfies the homogeneous wave equation, whereas the respective noncomplexified function does not.

AB - It is proved that a certain simple specification of the 2D Bateman-type complexified solution having a singularity at a running point satisfies the homogeneous wave equation, whereas the respective noncomplexified function does not.

UR - http://www.scopus.com/inward/record.url?scp=85098784996&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/cf166480-ed7c-35ce-9bda-5451a5c56389/

U2 - 10.1007/s10958-021-05185-w

DO - 10.1007/s10958-021-05185-w

M3 - Article

AN - SCOPUS:85098784996

VL - 252

SP - 619

EP - 623

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 5

ER -

ID: 73297591