Standard

Tuning the Energy of a Polariton Condensate via Bias-Controlled Rabi Splitting. / Tsotsis, P.; Tsintzos, S.I.; Christmann, G.; Lagoudakis, P.G.; Kyriienko, O.; Shelykh, I.A.; Baumberg, J.J.; Kavokin, A.V.; Hatzopoulos, Z.; Eldridge, P.S.; Savvidis, P.G.

In: Physical Review Applied, Vol. 2, No. 1, 2014, p. 014002_1-5.

Research output: Contribution to journalArticle

Harvard

Tsotsis, P, Tsintzos, SI, Christmann, G, Lagoudakis, PG, Kyriienko, O, Shelykh, IA, Baumberg, JJ, Kavokin, AV, Hatzopoulos, Z, Eldridge, PS & Savvidis, PG 2014, 'Tuning the Energy of a Polariton Condensate via Bias-Controlled Rabi Splitting', Physical Review Applied, vol. 2, no. 1, pp. 014002_1-5. https://doi.org/10.1103/PhysRevApplied.2.014002

APA

Tsotsis, P., Tsintzos, S. I., Christmann, G., Lagoudakis, P. G., Kyriienko, O., Shelykh, I. A., Baumberg, J. J., Kavokin, A. V., Hatzopoulos, Z., Eldridge, P. S., & Savvidis, P. G. (2014). Tuning the Energy of a Polariton Condensate via Bias-Controlled Rabi Splitting. Physical Review Applied, 2(1), 014002_1-5. https://doi.org/10.1103/PhysRevApplied.2.014002

Vancouver

Tsotsis P, Tsintzos SI, Christmann G, Lagoudakis PG, Kyriienko O, Shelykh IA et al. Tuning the Energy of a Polariton Condensate via Bias-Controlled Rabi Splitting. Physical Review Applied. 2014;2(1):014002_1-5. https://doi.org/10.1103/PhysRevApplied.2.014002

Author

Tsotsis, P. ; Tsintzos, S.I. ; Christmann, G. ; Lagoudakis, P.G. ; Kyriienko, O. ; Shelykh, I.A. ; Baumberg, J.J. ; Kavokin, A.V. ; Hatzopoulos, Z. ; Eldridge, P.S. ; Savvidis, P.G. / Tuning the Energy of a Polariton Condensate via Bias-Controlled Rabi Splitting. In: Physical Review Applied. 2014 ; Vol. 2, No. 1. pp. 014002_1-5.

BibTeX

@article{6a38ea6dacaa4437a132ff6f3e593835,
title = "Tuning the Energy of a Polariton Condensate via Bias-Controlled Rabi Splitting",
abstract = "We introduce an electrically driven scheme to tune the polariton condensate energy in a high-finesse GaAs microcavity. In contrast to the conventional redshift observed in semiconductor quantumwells (QWs) under applied electrical bias arising from the quantum-confined Stark effect (QCSE), we report here the blueshift of a polariton condensate caused by controlled reduction of the Rabi splitting due to tunneling-induced charge buildup and fractional bleaching of QWs. At larger electrical bias, the QCSE becomes dominant, leading to a redshift in the linear regime, while in the nonlinear regime to the eventual quenching of the condensate emission. This ability to tune the polariton condensate energy brings within reach the realization of voltage-controlled polariton condensate devices and variable-wavelength sources of coherent light.",
author = "P. Tsotsis and S.I. Tsintzos and G. Christmann and P.G. Lagoudakis and O. Kyriienko and I.A. Shelykh and J.J. Baumberg and A.V. Kavokin and Z. Hatzopoulos and P.S. Eldridge and P.G. Savvidis",
year = "2014",
doi = "10.1103/PhysRevApplied.2.014002",
language = "English",
volume = "2",
pages = "014002_1--5",
journal = "Physical Review Applied",
issn = "2331-7019",
publisher = "American Physical Society",
number = "1",

}

RIS

TY - JOUR

T1 - Tuning the Energy of a Polariton Condensate via Bias-Controlled Rabi Splitting

AU - Tsotsis, P.

AU - Tsintzos, S.I.

AU - Christmann, G.

AU - Lagoudakis, P.G.

AU - Kyriienko, O.

AU - Shelykh, I.A.

AU - Baumberg, J.J.

AU - Kavokin, A.V.

AU - Hatzopoulos, Z.

AU - Eldridge, P.S.

AU - Savvidis, P.G.

PY - 2014

Y1 - 2014

N2 - We introduce an electrically driven scheme to tune the polariton condensate energy in a high-finesse GaAs microcavity. In contrast to the conventional redshift observed in semiconductor quantumwells (QWs) under applied electrical bias arising from the quantum-confined Stark effect (QCSE), we report here the blueshift of a polariton condensate caused by controlled reduction of the Rabi splitting due to tunneling-induced charge buildup and fractional bleaching of QWs. At larger electrical bias, the QCSE becomes dominant, leading to a redshift in the linear regime, while in the nonlinear regime to the eventual quenching of the condensate emission. This ability to tune the polariton condensate energy brings within reach the realization of voltage-controlled polariton condensate devices and variable-wavelength sources of coherent light.

AB - We introduce an electrically driven scheme to tune the polariton condensate energy in a high-finesse GaAs microcavity. In contrast to the conventional redshift observed in semiconductor quantumwells (QWs) under applied electrical bias arising from the quantum-confined Stark effect (QCSE), we report here the blueshift of a polariton condensate caused by controlled reduction of the Rabi splitting due to tunneling-induced charge buildup and fractional bleaching of QWs. At larger electrical bias, the QCSE becomes dominant, leading to a redshift in the linear regime, while in the nonlinear regime to the eventual quenching of the condensate emission. This ability to tune the polariton condensate energy brings within reach the realization of voltage-controlled polariton condensate devices and variable-wavelength sources of coherent light.

U2 - 10.1103/PhysRevApplied.2.014002

DO - 10.1103/PhysRevApplied.2.014002

M3 - Article

VL - 2

SP - 014002_1-5

JO - Physical Review Applied

JF - Physical Review Applied

SN - 2331-7019

IS - 1

ER -

ID: 5743142