Building on [Clegg et al.’96], [Impagliazzo et al.’99] established that if an unsatisfiable k-CNF formula over n variables has a refutation of size S in the polynomial calculus resolution proof system, then this formula also has a refutation of degree k + O(n log S). The proof of this works by converting a small-size refutation into a small-degree one, but at the expense of increasing the proof size exponentially. This raises the question of whether it is possible to achieve both small size and small degree in the same refutation, or whether the exponential blow-up is inherent. Using and extending ideas from [Thapen’16], who studied the analogous question for the resolution proof system, we prove that a strong size-degree trade-off is necessary.

Original languageEnglish
Title of host publication11th Innovations in Theoretical Computer Science Conference, ITCS 2020
EditorsThomas Vidick
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959771344
ISBN (Print)9783959771344
DOIs
StatePublished - Jan 2020
Externally publishedYes
Event11th Innovations in Theoretical Computer Science Conference, ITCS 2020 - Seattle, United States
Duration: 12 Jan 202014 Jan 2020

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume151
ISSN (Print)1868-8969

Conference

Conference11th Innovations in Theoretical Computer Science Conference, ITCS 2020
Country/TerritoryUnited States
CitySeattle
Period12/01/2014/01/20

    Scopus subject areas

  • Software

    Research areas

  • Colored polynomial local search, PCR, Polynomial calculus, Polynomial calculus resolution, Proof complexity, Resolution, Size-degree trade-off

ID: 51953946