Standard

Trace inequalities for Sobolev martingales. / Столяров, Дмитрий Михайлович.

In: Revista Matematica Iberoamericana, Vol. 41, No. 1, 15.01.2025, p. 281–312.

Research output: Contribution to journalArticlepeer-review

Harvard

Столяров, ДМ 2025, 'Trace inequalities for Sobolev martingales', Revista Matematica Iberoamericana, vol. 41, no. 1, pp. 281–312. https://doi.org/10.4171/rmi/1535

APA

Vancouver

Столяров ДМ. Trace inequalities for Sobolev martingales. Revista Matematica Iberoamericana. 2025 Jan 15;41(1): 281–312. https://doi.org/10.4171/rmi/1535

Author

Столяров, Дмитрий Михайлович. / Trace inequalities for Sobolev martingales. In: Revista Matematica Iberoamericana. 2025 ; Vol. 41, No. 1. pp. 281–312.

BibTeX

@article{7cfa295e34d6475b98d688e52d7675c6,
title = "Trace inequalities for Sobolev martingales",
abstract = "We study limiting trace inequalities in the style of Maz{\textquoteright}ya and Meyers–Ziemer for Sobolev martingales. We develop the Bellman function approach to such estimates, which allows to provide sufficient and almost necessary conditions on the martingale space and the martingale transform under which the trace inequalities hold true.",
keywords = "Bellman function, martingale inequalities, trace theorem",
author = "Столяров, {Дмитрий Михайлович}",
year = "2025",
month = jan,
day = "15",
doi = "10.4171/rmi/1535",
language = "English",
volume = "41",
pages = " 281–312",
journal = "Revista Matematica Iberoamericana",
issn = "0213-2230",
publisher = "Universidad Autonoma de Madrid",
number = "1",

}

RIS

TY - JOUR

T1 - Trace inequalities for Sobolev martingales

AU - Столяров, Дмитрий Михайлович

PY - 2025/1/15

Y1 - 2025/1/15

N2 - We study limiting trace inequalities in the style of Maz’ya and Meyers–Ziemer for Sobolev martingales. We develop the Bellman function approach to such estimates, which allows to provide sufficient and almost necessary conditions on the martingale space and the martingale transform under which the trace inequalities hold true.

AB - We study limiting trace inequalities in the style of Maz’ya and Meyers–Ziemer for Sobolev martingales. We develop the Bellman function approach to such estimates, which allows to provide sufficient and almost necessary conditions on the martingale space and the martingale transform under which the trace inequalities hold true.

KW - Bellman function

KW - martingale inequalities

KW - trace theorem

UR - https://www.mendeley.com/catalogue/9ff77d02-e236-3b75-a016-9a6c2105d964/

U2 - 10.4171/rmi/1535

DO - 10.4171/rmi/1535

M3 - Article

VL - 41

SP - 281

EP - 312

JO - Revista Matematica Iberoamericana

JF - Revista Matematica Iberoamericana

SN - 0213-2230

IS - 1

ER -

ID: 134719813