Research output: Contribution to journal › Article › peer-review
Towards the reverse decomposition of unipotents. II. The relative case. / Vavilov, N. .
In: ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН, Vol. 484, 2019, p. 5-22.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Towards the reverse decomposition of unipotents. II. The relative case
AU - Vavilov, N.
PY - 2019
Y1 - 2019
N2 - Recently Raimund Preusser displayed very short polynomial expressions of elementary generators in classical groups over an arbitrary commutative ring as products of conjugates of an arbitrary matrix and its inverse by absolute elementary matrices. In particular, this provides very short proofs for description of normal subgroups. In [27] I discussed various generalisations of these results to exceptional groups, specifically those of types E6 and E7. Here, I produce a further variation of Preusser’s wonderful idea. Namely, in the case of GL(n, R), n > 4, I obtain similar expressions of elementary transvections as conjugates of g ∈ GL(n, R) and g−1 by relative elementary matrices x ∈ E(n, J) and then x ∈ E(n, R, J), for an ideal J E R. Again, in particular, this allows to give very short proofs for the description of subgroups normalised by E(n, J) or E(n, R, J) – and thus also of subnormal subgroups in GL(n, R).
AB - Recently Raimund Preusser displayed very short polynomial expressions of elementary generators in classical groups over an arbitrary commutative ring as products of conjugates of an arbitrary matrix and its inverse by absolute elementary matrices. In particular, this provides very short proofs for description of normal subgroups. In [27] I discussed various generalisations of these results to exceptional groups, specifically those of types E6 and E7. Here, I produce a further variation of Preusser’s wonderful idea. Namely, in the case of GL(n, R), n > 4, I obtain similar expressions of elementary transvections as conjugates of g ∈ GL(n, R) and g−1 by relative elementary matrices x ∈ E(n, J) and then x ∈ E(n, R, J), for an ideal J E R. Again, in particular, this allows to give very short proofs for the description of subgroups normalised by E(n, J) or E(n, R, J) – and thus also of subnormal subgroups in GL(n, R).
KW - CLASSICAL GROUPS
KW - Chevalley groups
KW - normal structure
KW - elementary subgroups
KW - decomposition of unipotents
KW - reverse decomposition of unipotents
KW - классические группы
KW - группы Шевалье
KW - структура нормальных подгрупп
KW - элементарные подгруппы
KW - разложение унипотентов
KW - обратное разложение унипотентов
UR - http://ftp.pdmi.ras.ru/znsl/2019/v484/abs005.html
M3 - Article
VL - 484
SP - 5
EP - 22
JO - ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН
JF - ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН
SN - 0373-2703
ER -
ID: 51601868