The paper presents an experiment aimed at comparison of results of topic modelling via non-negative matrix factorization (NMF) with that of manual topic annotation performed by an expert. The experiment was conducted on the annotated corpus of Russian short stories of the initial three decades of the 20th century, which contains 310 stories with a total of 1000000 tokens written by 300 Russian writers. The annotation scheme used in topic annotation includes 89 topics, further this list was reduced down to 30 generalized ones, the most frequent of which turned out to be the following: death, relationships, love, social groups, social processes, family, money, human sins, nature, religion, and war. Then, the corpus divided into three consecutive time periods was subjected to NMF topic modelling which provided a model including 24 topics. The results of both topic annotations were compared and described. The paper discusses the main findings of the study and the difficulties of fiction topic modelling which should be taken into account. For example, experimental results showed that topic modelling via NMF should be primarily recommended for the revealing of topics referring to general background of literary texts (e.g., war, love, nature, family) rather than for detecting topics related with some critical events or relations between characters (e.g., death or relations). The comparison of human and automatic topic annotation seems an important step for the improvement of artificial technologies techniques related with NLP.

Original languageEnglish
Title of host publicationAdvances in Computational Intelligence - 19th Mexican International Conference on Artificial Intelligence, MICAI 2020, Proceedings
EditorsLourdes Martínez-Villaseñor, Hiram Ponce, Oscar Herrera-Alcántara, Félix A. Castro-Espinoza
PublisherSpringer Nature
Pages134-151
Number of pages18
ISBN (Print)9783030608866
DOIs
StatePublished - 2020
Event19th Mexican International Conference on Artificial Intelligence, MICAI 2020 - Mexico City, Mexico
Duration: 12 Oct 202017 Oct 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12469 LNAI
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference19th Mexican International Conference on Artificial Intelligence, MICAI 2020
Country/TerritoryMexico
CityMexico City
Period12/10/2017/10/20

    Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

    Research areas

  • Corpus linguistics, Digital humanities, Fiction, Literary criticism, Machine learning, NMF, NPL, Russian literature, Topic modelling

ID: 98682414