Research output: Contribution to journal › Article › peer-review
Thin-Film Composite Polyamide Membranes Modified with HKUST-1 for Water Treatment: Characterization and Nanofiltration Performance. / Дубовенко, Роман Русланович; Дмитренко, Мария Евгеньевна; Микулан, Анна Ярославовна; Пузикова, Маргарита Егоровна; Джакашов, Ильнур Патикуллаевич; Раковская, Надежда Станиславовна; Кузьминова, Анна Игоревна; Михайловская, Ольга Алексеевна; Su, Rongxin; Пенькова, Анастасия Владимировна.
In: Polymers, Vol. 17, No. 9, 1137, 22.04.2025.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Thin-Film Composite Polyamide Membranes Modified with HKUST-1 for Water Treatment: Characterization and Nanofiltration Performance
AU - Дубовенко, Роман Русланович
AU - Дмитренко, Мария Евгеньевна
AU - Микулан, Анна Ярославовна
AU - Пузикова, Маргарита Егоровна
AU - Джакашов, Ильнур Патикуллаевич
AU - Раковская, Надежда Станиславовна
AU - Кузьминова, Анна Игоревна
AU - Михайловская, Ольга Алексеевна
AU - Su, Rongxin
AU - Пенькова, Анастасия Владимировна
PY - 2025/4/22
Y1 - 2025/4/22
N2 - The development of sustainable nanofiltration membranes requires alternatives to petroleum-derived polymer substrates. This study demonstrates the successful use of an eco-friendly cellulose acetate/cellulose nitrate (CA/CN) blend substrate for fabricating high-performance modified thin-film composite (mTFC) membranes. A dense, non-porous polyamide (PA) selective layer was formed via the interfacial polymerization method and modified with 0.05-0.1 wt.% HKUST-1 (Cu 3BTC 2 , MOF-199). Characterization by FTIR, XPS, SEM, AFM, and contact angle measurements confirmed the CA/CN substrate's suitability for TFC membrane fabrication. HKUST-1 incorporation created a distinctive ridge-and-valley morphology while significantly altering PA layer hydrophilicity and roughness. The mTFC membrane performance could be fine-tuned by the controlled incorporation of HKUST-1; incorporation through the aqueous phase slowed down the formation of the PA layer and significantly reduced its thickness, while the addition through the organic phase resulted in the formation of a denser layer due to HKUST-1 agglomeration. Thus, either enhanced permeability (123 LMH bar -1 with 0.05 wt.% aqueous-phase incorporation) or rejection (>89% dye removal with 0.05 wt.% organic-phase incorporation) were achieved. Both mTFC membranes also exhibited improved heavy metal ion rejection (>91.7%), confirming their industrial potential. Higher HKUST-1 loading (0.1 wt.%) caused MOF agglomeration, reducing performance. This approach establishes a sustainable fabrication route for tunable TFC membranes targeting specific separation tasks.
AB - The development of sustainable nanofiltration membranes requires alternatives to petroleum-derived polymer substrates. This study demonstrates the successful use of an eco-friendly cellulose acetate/cellulose nitrate (CA/CN) blend substrate for fabricating high-performance modified thin-film composite (mTFC) membranes. A dense, non-porous polyamide (PA) selective layer was formed via the interfacial polymerization method and modified with 0.05-0.1 wt.% HKUST-1 (Cu 3BTC 2 , MOF-199). Characterization by FTIR, XPS, SEM, AFM, and contact angle measurements confirmed the CA/CN substrate's suitability for TFC membrane fabrication. HKUST-1 incorporation created a distinctive ridge-and-valley morphology while significantly altering PA layer hydrophilicity and roughness. The mTFC membrane performance could be fine-tuned by the controlled incorporation of HKUST-1; incorporation through the aqueous phase slowed down the formation of the PA layer and significantly reduced its thickness, while the addition through the organic phase resulted in the formation of a denser layer due to HKUST-1 agglomeration. Thus, either enhanced permeability (123 LMH bar -1 with 0.05 wt.% aqueous-phase incorporation) or rejection (>89% dye removal with 0.05 wt.% organic-phase incorporation) were achieved. Both mTFC membranes also exhibited improved heavy metal ion rejection (>91.7%), confirming their industrial potential. Higher HKUST-1 loading (0.1 wt.%) caused MOF agglomeration, reducing performance. This approach establishes a sustainable fabrication route for tunable TFC membranes targeting specific separation tasks.
KW - thin-film composite
KW - metal–organic framework
KW - interfacial polymerization
KW - membrane
KW - nanofiltration
KW - dye
UR - https://www.mendeley.com/catalogue/84a00369-46c9-346f-8762-ceda07b9e474/
U2 - 10.3390/polym17091137
DO - 10.3390/polym17091137
M3 - Article
C2 - 40362921
VL - 17
JO - Polymers
JF - Polymers
SN - 2073-4360
IS - 9
M1 - 1137
ER -
ID: 135055245