In contrast to the thermodynamics of fluid surfaces, the thermodynamics of solid surfaces was not elaborated in detail by Gibbs and other founders of surface thermodynamics. During recent decades, significant progress in this field has been achieved in both the understanding of old notions, like chemical potentials, and in formulating new areas. Applying to solid surfaces, basic relationships of classical theory of capillarity, such as the Laplace equation, the Young equation, the Gibbs adsorption equation, the Gibbs-Curie principle, the Wulff theorem and the Dupré rule, were reformulated and generalized. The thermodynamics of self-dispersion of solids and the thermodynamics of contact line phenomena were developed as well. This review provides a fresh insight into the modern state of the thermodynamics of solid surfaces. Not only a solid surface itself, both in a macroscopic body and in the system of fine particles, but also the interaction of solid surfaces with fluid phases, such as wetting phenomenon, will be analyzed. As the development of surface thermodynamics has given a powerful impetus to the creation of new experimental methods, some of these will be described as examples.

Original languageEnglish
Pages (from-to)173-247
Number of pages75
JournalSurface Science Reports
Volume23
Issue number6-8
DOIs
StatePublished - May 1996

    Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Chemistry(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Materials Chemistry

    Research areas

  • Cohesive energy, Fine particles, Line tension, Surface energy, Surface tension, Surface thermodynamics, Wetting

ID: 100300620