DOI

The model of spherical molecular aggregate of nonionic surfactant is proposed. This model allows for the maximal (in accordance with packing rules) penetration of water molecules into an aggregate and is an alternative to the droplet model of molecular aggregate. Necessary conditions for the applicability of a model named quasi-droplet model are formulated. Based on this model, the dependence of the work of molecular aggregate formation on the aggregation number and surfactant monomer concentration in solution that plays the key role for the theory of micellization is studied. The equation is derived for the coordinates of maximum and minimum of aggregate formation work on the aggregation number axis arising with an increase in the concentration of micellar solution. Model calculations of the thermodynamic characteristics of the kinetics of micellization are performed. The approximation of the work of molecular aggregate formation allowing for the analytical study is constructed.

Translated title of the contributionТермодинамические характеристики сферического молекулярного агрегата ПАВ в квазикапельной модели
Original languageEnglish
Pages (from-to)145-154
Number of pages10
JournalColloid Journal
Volume65
Issue number2
DOIs
StatePublished - 1 Jan 2003

    Scopus subject areas

  • Surfaces and Interfaces
  • Physical and Theoretical Chemistry
  • Colloid and Surface Chemistry

ID: 5112326