DOI

The thermal expansion of francisite, [Cu3-BiO2](SeO3)2Cl, a rare copper(II)-bismuth(III) oxide chloride selenite, was studied by high-temperature X-ray powder diffraction over the temperature range 293-773 K. The mineral is stable up to 748 K at which temperature it decomposes to [Bi2O2]Se, CuO and, probably, [BiO][CuSe]. The thermal expansion has an anisotropic character (α(a) = 9.0, α(b) = 4.7, α(c) = 17.0 · 10-6 K-1), which is determined by the distribution of the bonds between additional oxygen atoms ((a)O) and metal atoms (A). These bonds form two-dimensional systems in which each (a)O atom is tetrahedrally coordinated by one Bi and three Cu atoms. Thus the structure can be described in terms of oxocentered metal atom tetrahedra consisting of [(a)O2Cu3Bi] layers of ((a)OCu3Bi) tetrahedra, (SeO3) groups and Cl anions. This description gives the most reasonable viewpoint to explain the anisotropic thermal expansion character of francisite.

Original languageEnglish
Pages (from-to)440-444
Number of pages5
JournalPhysics and Chemistry of Minerals
Volume27
Issue number6
DOIs
StatePublished - 1 Jan 2000

    Scopus subject areas

  • Materials Science(all)
  • Geochemistry and Petrology

    Research areas

  • Francisite, Oxocentered tetrahedra, Thermal expansion

ID: 36550660