Standard

The Schouten Curvature for a Nonholonomic Distribution in Sub-Riemannian Geometry and Jacobi Fields. / Крым, Виктор Револьтович.

OPTA-SCL 2018 - Proceedings of the School-Seminar on Optimization Problems and their Applications: Труды школы-семинара по проблемам оптимизации и их применению, Омск, 08–14 июля 2018 г.. 2018. p. 213-227 (CEUR WORKSHOP PROCEEDINGS; Vol. 2098).

Research output: Chapter in Book/Report/Conference proceedingConference abstractspeer-review

Harvard

Крым, ВР 2018, The Schouten Curvature for a Nonholonomic Distribution in Sub-Riemannian Geometry and Jacobi Fields. in OPTA-SCL 2018 - Proceedings of the School-Seminar on Optimization Problems and their Applications: Труды школы-семинара по проблемам оптимизации и их применению, Омск, 08–14 июля 2018 г.. CEUR WORKSHOP PROCEEDINGS, vol. 2098, pp. 213-227, Школа-семинар по проблемам оптимизации и их применению, Омск, Russian Federation, 8/07/18. <https://ceur-ws.org/Vol-2098/paper19.pdf>

APA

Крым, В. Р. (2018). The Schouten Curvature for a Nonholonomic Distribution in Sub-Riemannian Geometry and Jacobi Fields. In OPTA-SCL 2018 - Proceedings of the School-Seminar on Optimization Problems and their Applications: Труды школы-семинара по проблемам оптимизации и их применению, Омск, 08–14 июля 2018 г. (pp. 213-227). (CEUR WORKSHOP PROCEEDINGS; Vol. 2098). https://ceur-ws.org/Vol-2098/paper19.pdf

Vancouver

Крым ВР. The Schouten Curvature for a Nonholonomic Distribution in Sub-Riemannian Geometry and Jacobi Fields. In OPTA-SCL 2018 - Proceedings of the School-Seminar on Optimization Problems and their Applications: Труды школы-семинара по проблемам оптимизации и их применению, Омск, 08–14 июля 2018 г.. 2018. p. 213-227. (CEUR WORKSHOP PROCEEDINGS).

Author

Крым, Виктор Револьтович. / The Schouten Curvature for a Nonholonomic Distribution in Sub-Riemannian Geometry and Jacobi Fields. OPTA-SCL 2018 - Proceedings of the School-Seminar on Optimization Problems and their Applications: Труды школы-семинара по проблемам оптимизации и их применению, Омск, 08–14 июля 2018 г.. 2018. pp. 213-227 (CEUR WORKSHOP PROCEEDINGS).

BibTeX

@inbook{79e72f2f20aa4c4fb347b20250cf9f9f,
title = "The Schouten Curvature for a Nonholonomic Distribution in Sub-Riemannian Geometry and Jacobi Fields",
abstract = "The paper shows that if the distribution is defined on a manifold with the special smooth structure and does not depend on the vertical coordinates, then the Schouten curvature tensor coincides with the Riemannian curvature tensor. The Schouten curvature tensor is used to write the Jacobi equation for the distribution. This leads to studies on second-order optimality conditions for the horizontal geodesics in subRiemannian geometry. Conjugate points are defined by the solutions of the Jacobi equation. If a geodesic passed a point conjugated with its beginning then this geodesic ceases to be optimal",
author = "Крым, {Виктор Револьтович}",
year = "2018",
language = "English",
series = "CEUR WORKSHOP PROCEEDINGS",
pages = "213--227",
booktitle = "OPTA-SCL 2018 - Proceedings of the School-Seminar on Optimization Problems and their Applications",
note = "Школа-семинар по проблемам оптимизации и их применению, OPTA-SCL 2018 ; Conference date: 08-07-2018 Through 14-07-2018",

}

RIS

TY - CHAP

T1 - The Schouten Curvature for a Nonholonomic Distribution in Sub-Riemannian Geometry and Jacobi Fields

AU - Крым, Виктор Револьтович

PY - 2018

Y1 - 2018

N2 - The paper shows that if the distribution is defined on a manifold with the special smooth structure and does not depend on the vertical coordinates, then the Schouten curvature tensor coincides with the Riemannian curvature tensor. The Schouten curvature tensor is used to write the Jacobi equation for the distribution. This leads to studies on second-order optimality conditions for the horizontal geodesics in subRiemannian geometry. Conjugate points are defined by the solutions of the Jacobi equation. If a geodesic passed a point conjugated with its beginning then this geodesic ceases to be optimal

AB - The paper shows that if the distribution is defined on a manifold with the special smooth structure and does not depend on the vertical coordinates, then the Schouten curvature tensor coincides with the Riemannian curvature tensor. The Schouten curvature tensor is used to write the Jacobi equation for the distribution. This leads to studies on second-order optimality conditions for the horizontal geodesics in subRiemannian geometry. Conjugate points are defined by the solutions of the Jacobi equation. If a geodesic passed a point conjugated with its beginning then this geodesic ceases to be optimal

M3 - Conference abstracts

T3 - CEUR WORKSHOP PROCEEDINGS

SP - 213

EP - 227

BT - OPTA-SCL 2018 - Proceedings of the School-Seminar on Optimization Problems and their Applications

T2 - Школа-семинар по проблемам оптимизации и их применению

Y2 - 8 July 2018 through 14 July 2018

ER -

ID: 127455878