Standard

The Rotation Number Integer Quantization Effect in Braid Groups. / Malyutin, A. V.

In: Proceedings of the Steklov Institute of Mathematics, Vol. 305, No. 1, 01.05.2019, p. 182-194.

Research output: Contribution to journalArticlepeer-review

Harvard

Malyutin, AV 2019, 'The Rotation Number Integer Quantization Effect in Braid Groups', Proceedings of the Steklov Institute of Mathematics, vol. 305, no. 1, pp. 182-194. https://doi.org/10.1134/S0081543819030106

APA

Malyutin, A. V. (2019). The Rotation Number Integer Quantization Effect in Braid Groups. Proceedings of the Steklov Institute of Mathematics, 305(1), 182-194. https://doi.org/10.1134/S0081543819030106

Vancouver

Malyutin AV. The Rotation Number Integer Quantization Effect in Braid Groups. Proceedings of the Steklov Institute of Mathematics. 2019 May 1;305(1):182-194. https://doi.org/10.1134/S0081543819030106

Author

Malyutin, A. V. / The Rotation Number Integer Quantization Effect in Braid Groups. In: Proceedings of the Steklov Institute of Mathematics. 2019 ; Vol. 305, No. 1. pp. 182-194.

BibTeX

@article{046d3b3e72a7476bbe20c2a102bc56f5,
title = "The Rotation Number Integer Quantization Effect in Braid Groups",
abstract = "V. M. Buchstaber, O. V. Karpov, and S. I. Tertychnyi initiated the study of the rotation number integer quantization effect for a class of dynamical systems on a torus that includes dynamical systems modeling the dynamics of the Josephson junction. Focusing on this effect, we initiate the study of a similar rotation number quantization effect for a class of groups acting on the circle, including Artin{\textquoteright}s braid groups.",
author = "Malyutin, {A. V.}",
year = "2019",
month = may,
day = "1",
doi = "10.1134/S0081543819030106",
language = "English",
volume = "305",
pages = "182--194",
journal = "Proceedings of the Steklov Institute of Mathematics",
issn = "0081-5438",
publisher = "МАИК {"}Наука/Интерпериодика{"}",
number = "1",

}

RIS

TY - JOUR

T1 - The Rotation Number Integer Quantization Effect in Braid Groups

AU - Malyutin, A. V.

PY - 2019/5/1

Y1 - 2019/5/1

N2 - V. M. Buchstaber, O. V. Karpov, and S. I. Tertychnyi initiated the study of the rotation number integer quantization effect for a class of dynamical systems on a torus that includes dynamical systems modeling the dynamics of the Josephson junction. Focusing on this effect, we initiate the study of a similar rotation number quantization effect for a class of groups acting on the circle, including Artin’s braid groups.

AB - V. M. Buchstaber, O. V. Karpov, and S. I. Tertychnyi initiated the study of the rotation number integer quantization effect for a class of dynamical systems on a torus that includes dynamical systems modeling the dynamics of the Josephson junction. Focusing on this effect, we initiate the study of a similar rotation number quantization effect for a class of groups acting on the circle, including Artin’s braid groups.

UR - http://www.scopus.com/inward/record.url?scp=85073544468&partnerID=8YFLogxK

U2 - 10.1134/S0081543819030106

DO - 10.1134/S0081543819030106

M3 - Article

AN - SCOPUS:85073544468

VL - 305

SP - 182

EP - 194

JO - Proceedings of the Steklov Institute of Mathematics

JF - Proceedings of the Steklov Institute of Mathematics

SN - 0081-5438

IS - 1

ER -

ID: 52019788