Standard

The prenucleolus and the prekernel for games with communication structures. / Khmelnitskaya, A.B. ; Sudholter, Peter.

In: Mathematical Methods of Operations Research, Vol. 78, No. 2, 30.06.2013, p. 285-299.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

Khmelnitskaya, A.B. ; Sudholter, Peter. / The prenucleolus and the prekernel for games with communication structures. In: Mathematical Methods of Operations Research. 2013 ; Vol. 78, No. 2. pp. 285-299.

BibTeX

@article{5e63c30f4ab34b8db375232e9dcdbb9d,
title = "The prenucleolus and the prekernel for games with communication structures",
abstract = "It is well-known that the prekernel on the class of TU games is uniquely determined by non-emptiness, Pareto efficiency (EFF), covariance under strategic equivalence (COV), the equal treatment property, the reduced game property (RGP), and its converse. We show that the prekernel on the class of TU games restricted to the connected coalitions with respect to communication structures may be axiomatized by suitably generalized axioms. Moreover, it is shown that the prenucleolus, the unique solution concept on the class of TU games that satisfies singlevaluedness, COV, anonymity, and RGP, may be characterized by suitably generalized versions of these axioms together with a property that is called “independence of irrelevant connections”. This property requires that any element of the solution to a game with communication structure is an element of the solution to the game that allows unrestricted cooperation in all connected components, provided that each newly connected coalition is sufficiently charged, i.e., receives a sufficiently small worth. Both characterization results may be extended to games with conference structures.",
keywords = "TU game Solution concept Communication and conference structure Nucleolus Kernel",
author = "A.B. Khmelnitskaya and Peter Sudholter",
year = "2013",
month = jun,
day = "30",
doi = "10.1007/s00186-013-0444-7",
language = "English",
volume = "78",
pages = "285--299",
journal = "Mathematical Methods of Operations Research",
issn = "1432-2994",
publisher = "Physica-Verlag",
number = "2",

}

RIS

TY - JOUR

T1 - The prenucleolus and the prekernel for games with communication structures

AU - Khmelnitskaya, A.B.

AU - Sudholter, Peter

PY - 2013/6/30

Y1 - 2013/6/30

N2 - It is well-known that the prekernel on the class of TU games is uniquely determined by non-emptiness, Pareto efficiency (EFF), covariance under strategic equivalence (COV), the equal treatment property, the reduced game property (RGP), and its converse. We show that the prekernel on the class of TU games restricted to the connected coalitions with respect to communication structures may be axiomatized by suitably generalized axioms. Moreover, it is shown that the prenucleolus, the unique solution concept on the class of TU games that satisfies singlevaluedness, COV, anonymity, and RGP, may be characterized by suitably generalized versions of these axioms together with a property that is called “independence of irrelevant connections”. This property requires that any element of the solution to a game with communication structure is an element of the solution to the game that allows unrestricted cooperation in all connected components, provided that each newly connected coalition is sufficiently charged, i.e., receives a sufficiently small worth. Both characterization results may be extended to games with conference structures.

AB - It is well-known that the prekernel on the class of TU games is uniquely determined by non-emptiness, Pareto efficiency (EFF), covariance under strategic equivalence (COV), the equal treatment property, the reduced game property (RGP), and its converse. We show that the prekernel on the class of TU games restricted to the connected coalitions with respect to communication structures may be axiomatized by suitably generalized axioms. Moreover, it is shown that the prenucleolus, the unique solution concept on the class of TU games that satisfies singlevaluedness, COV, anonymity, and RGP, may be characterized by suitably generalized versions of these axioms together with a property that is called “independence of irrelevant connections”. This property requires that any element of the solution to a game with communication structure is an element of the solution to the game that allows unrestricted cooperation in all connected components, provided that each newly connected coalition is sufficiently charged, i.e., receives a sufficiently small worth. Both characterization results may be extended to games with conference structures.

KW - TU game Solution concept Communication and conference structure Nucleolus Kernel

U2 - 10.1007/s00186-013-0444-7

DO - 10.1007/s00186-013-0444-7

M3 - Article

VL - 78

SP - 285

EP - 299

JO - Mathematical Methods of Operations Research

JF - Mathematical Methods of Operations Research

SN - 1432-2994

IS - 2

ER -

ID: 7407129