Research output: Contribution to journal › Article › peer-review
The Neumann boundary value problem for a semilinear elliptic equation in a thin cylinder. the least energy solutions. / Shcheglova, A. P.
In: Journal of Mathematical Sciences , Vol. 152, No. 5, 01.08.2008, p. 780-798.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - The Neumann boundary value problem for a semilinear elliptic equation in a thin cylinder. the least energy solutions
AU - Shcheglova, A. P.
PY - 2008/8/1
Y1 - 2008/8/1
N2 - It is proved that the least energy solution of the BVP mathematical expression is pressent is a constant for all q∈ (2; 2*] if Q ⊂ ℝn (n ≥ 3) is a sufficiently thin cylinder. Bibliography: 8 titles. © 2008 Springer Science+Business Media, Inc.
AB - It is proved that the least energy solution of the BVP mathematical expression is pressent is a constant for all q∈ (2; 2*] if Q ⊂ ℝn (n ≥ 3) is a sufficiently thin cylinder. Bibliography: 8 titles. © 2008 Springer Science+Business Media, Inc.
UR - http://www.scopus.com/inward/record.url?scp=51749088775&partnerID=8YFLogxK
U2 - 10.1007/s10958-008-9089-0
DO - 10.1007/s10958-008-9089-0
M3 - Article
AN - SCOPUS:51749088775
VL - 152
SP - 780
EP - 798
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 5
ER -
ID: 115494417