Research output: Contribution to journal › Article › peer-review
The Lubin–Tate Formal Module in a Cyclic Unramified P-Extension as a Galois Module. / Vostokov, S. V.; Nekrasov, I. I.
In: Journal of Mathematical Sciences (United States), Vol. 219, No. 3, 2016, p. 375-379.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - The Lubin–Tate Formal Module in a Cyclic Unramified P-Extension as a Galois Module
AU - Vostokov, S. V.
AU - Nekrasov, I. I.
N1 - Vostokov, S.V., Nekrasov, I.I. The Lubin–Tate Formal Module in a Cyclic Unramified P-Extension as a Galois Module. J Math Sci 219, 375–379 (2016). https://doi.org/10.1007/s10958-016-3113-6
PY - 2016
Y1 - 2016
N2 - In the paper, the structure of the OK[G]-module F(mM) is described, where M/L, L/K, and K/ℚp are finite Galois extensions (p is a fixed prime number), G = Gal(M/L), mM is a maximal ideal of the ring of integers OM, and F is a Lubin–Tate formal group law over the ring OK for a fixed uniformizer π.
AB - In the paper, the structure of the OK[G]-module F(mM) is described, where M/L, L/K, and K/ℚp are finite Galois extensions (p is a fixed prime number), G = Gal(M/L), mM is a maximal ideal of the ring of integers OM, and F is a Lubin–Tate formal group law over the ring OK for a fixed uniformizer π.
UR - http://www.scopus.com/inward/record.url?scp=84992362238&partnerID=8YFLogxK
U2 - 10.1007/s10958-016-3113-6
DO - 10.1007/s10958-016-3113-6
M3 - Article
AN - SCOPUS:84992362238
VL - 219
SP - 375
EP - 379
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 3
ER -
ID: 38481225