THE INVARIANT AND QUASI-INVARIANT TRANSFORMATIONS OF THE STABLE LÉVY PROCESSES. / Smorodina, N.V.
In: Acta Applicandae Mathematicae, Vol. 97, No. 1-3, 2007, p. 239-250.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - THE INVARIANT AND QUASI-INVARIANT TRANSFORMATIONS OF THE STABLE LÉVY PROCESSES
AU - Smorodina, N.V.
PY - 2007
Y1 - 2007
N2 - Let ξ(t),t [0,1] be a strictly stable Lévy process with the index of stability α (0,2). By Pξ we denote the law of ξ in the Skorokhod space double struck D sign([0,1],ℝd). For arbitrary ξ we construct Pξ -quasi-invariant semigroup of transformations of double struck D sign([0,1],ℝd. Under some nondegeneracy condition on the spectral measure of the stable process we construct Pξ -quasi-invariant group of transformations of double struck D sign([0,1],ℝd). In symmetric case this group is a group of the invariant transformations. © Springer Science + Business Media B.V. 2007.
AB - Let ξ(t),t [0,1] be a strictly stable Lévy process with the index of stability α (0,2). By Pξ we denote the law of ξ in the Skorokhod space double struck D sign([0,1],ℝd). For arbitrary ξ we construct Pξ -quasi-invariant semigroup of transformations of double struck D sign([0,1],ℝd. Under some nondegeneracy condition on the spectral measure of the stable process we construct Pξ -quasi-invariant group of transformations of double struck D sign([0,1],ℝd). In symmetric case this group is a group of the invariant transformations. © Springer Science + Business Media B.V. 2007.
M3 - Article
VL - 97
SP - 239
EP - 250
JO - Acta Applicandae Mathematicae
JF - Acta Applicandae Mathematicae
SN - 0167-8019
IS - 1-3
ER -
ID: 5176086