Standard

The geometric classification of Leibniz algebras. / Ismailov, Nurlan; Kaygorodov, Ivan; Volkov, Yury.

In: International Journal of Mathematics, Vol. 29, No. 5, 1850035, 01.05.2018.

Research output: Contribution to journalArticlepeer-review

Harvard

Ismailov, N, Kaygorodov, I & Volkov, Y 2018, 'The geometric classification of Leibniz algebras', International Journal of Mathematics, vol. 29, no. 5, 1850035. https://doi.org/10.1142/S0129167X18500350

APA

Ismailov, N., Kaygorodov, I., & Volkov, Y. (2018). The geometric classification of Leibniz algebras. International Journal of Mathematics, 29(5), [1850035]. https://doi.org/10.1142/S0129167X18500350

Vancouver

Ismailov N, Kaygorodov I, Volkov Y. The geometric classification of Leibniz algebras. International Journal of Mathematics. 2018 May 1;29(5). 1850035. https://doi.org/10.1142/S0129167X18500350

Author

Ismailov, Nurlan ; Kaygorodov, Ivan ; Volkov, Yury. / The geometric classification of Leibniz algebras. In: International Journal of Mathematics. 2018 ; Vol. 29, No. 5.

BibTeX

@article{3659d667fe9647b4907acd33780865c5,
title = "The geometric classification of Leibniz algebras",
abstract = "We describe all rigid algebras and all irreducible components in the variety of four-dimensional Leibniz algebras Leib4 over C. In particular, we prove that the Grunewald-O'Halloran conjecture is not valid and the Vergne conjecture is valid for eib4.",
keywords = "degeneration, Grunewald-O'Halloran conjecture, Leibniz algebra, orbit closure, rigid algebra, Vergne conjecture, NILPOTENT LIE-ALGEBRAS, DEGENERATIONS, DEFORMATIONS",
author = "Nurlan Ismailov and Ivan Kaygorodov and Yury Volkov",
year = "2018",
month = may,
day = "1",
doi = "10.1142/S0129167X18500350",
language = "English",
volume = "29",
journal = "International Journal of Mathematics",
issn = "0129-167X",
publisher = "WORLD SCIENTIFIC PUBL CO PTE LTD",
number = "5",

}

RIS

TY - JOUR

T1 - The geometric classification of Leibniz algebras

AU - Ismailov, Nurlan

AU - Kaygorodov, Ivan

AU - Volkov, Yury

PY - 2018/5/1

Y1 - 2018/5/1

N2 - We describe all rigid algebras and all irreducible components in the variety of four-dimensional Leibniz algebras Leib4 over C. In particular, we prove that the Grunewald-O'Halloran conjecture is not valid and the Vergne conjecture is valid for eib4.

AB - We describe all rigid algebras and all irreducible components in the variety of four-dimensional Leibniz algebras Leib4 over C. In particular, we prove that the Grunewald-O'Halloran conjecture is not valid and the Vergne conjecture is valid for eib4.

KW - degeneration

KW - Grunewald-O'Halloran conjecture

KW - Leibniz algebra

KW - orbit closure

KW - rigid algebra

KW - Vergne conjecture

KW - NILPOTENT LIE-ALGEBRAS

KW - DEGENERATIONS

KW - DEFORMATIONS

UR - http://www.scopus.com/inward/record.url?scp=85046006364&partnerID=8YFLogxK

UR - http://arxiv.org/abs/1705.04346

UR - http://www.mendeley.com/research/geometric-classification-leibniz-algebras

U2 - 10.1142/S0129167X18500350

DO - 10.1142/S0129167X18500350

M3 - Article

AN - SCOPUS:85046006364

VL - 29

JO - International Journal of Mathematics

JF - International Journal of Mathematics

SN - 0129-167X

IS - 5

M1 - 1850035

ER -

ID: 28229626