Research output: Contribution to journal › Article › peer-review
The effect of surface elasticity and residual surface stress in an elastic body with an elliptic nanohole. / Grekov, M.A.; Yazovskaya, A.A.
In: Journal of Applied Mathematics and Mechanics, Vol. 78, No. 2, 2014, p. 172-180.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - The effect of surface elasticity and residual surface stress in an elastic body with an elliptic nanohole
AU - Grekov, M.A.
AU - Yazovskaya, A.A.
N1 - Funding Information: This research was supported by the Russian Foundation for Basic Research (11-01-00230) and the St Petersburg State University (9.37.129.2011). Publisher Copyright: © 2014 Elsevier Ltd. All rights reserved. Copyright: Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2014
Y1 - 2014
N2 - The deformation of an elastic plane with an elliptic hole in a uniform stress field is considered, taking into account the surface elasticity and the residual surface tension. The solution of the problem, based on the use of the linearized Gurtin-Murdoch surface elasticity relations and the complex Goursat-Kolosov potentials, is reduced to a singular integrodifferential equation. Using the example of a circular hole, for which an exact solution of the equation is obtained in closed form, the effect of the residual surface tension and the surface elasticity on the stress state close to and on the boundary of a nanohole is analysed for uniaxial tension. It is shown that the effect of the residual surface stress and the surface tension, due to deformation of the body, depends on the elastic properties of the surface, the value of the stretching load and the dimensions of the hole.
AB - The deformation of an elastic plane with an elliptic hole in a uniform stress field is considered, taking into account the surface elasticity and the residual surface tension. The solution of the problem, based on the use of the linearized Gurtin-Murdoch surface elasticity relations and the complex Goursat-Kolosov potentials, is reduced to a singular integrodifferential equation. Using the example of a circular hole, for which an exact solution of the equation is obtained in closed form, the effect of the residual surface tension and the surface elasticity on the stress state close to and on the boundary of a nanohole is analysed for uniaxial tension. It is shown that the effect of the residual surface stress and the surface tension, due to deformation of the body, depends on the elastic properties of the surface, the value of the stretching load and the dimensions of the hole.
UR - http://www.scopus.com/inward/record.url?scp=84944443405&partnerID=8YFLogxK
U2 - 10.1016/j.jappmathmech.2014.07.010
DO - 10.1016/j.jappmathmech.2014.07.010
M3 - Article
VL - 78
SP - 172
EP - 180
JO - Journal of Applied Mathematics and Mechanics
JF - Journal of Applied Mathematics and Mechanics
SN - 0021-8928
IS - 2
ER -
ID: 5720078