The Effect of Casting Technique and Severe Straining on the Microstructure, Electrical Conductivity, Mechanical Properties and Thermal Stability of the Al–1.7 wt.% Fe Alloy. / Medvedev, Andrey; Zhukova, Olga; Enikeev, Nariman; Kazykhanov, Vil; Timofeev, Victor; Murashkin, Maxim.
In: Materials, Vol. 16, No. 8, 3067, 13.04.2023.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - The Effect of Casting Technique and Severe Straining on the Microstructure, Electrical Conductivity, Mechanical Properties and Thermal Stability of the Al–1.7 wt.% Fe Alloy
AU - Medvedev, Andrey
AU - Zhukova, Olga
AU - Enikeev, Nariman
AU - Kazykhanov, Vil
AU - Timofeev, Victor
AU - Murashkin, Maxim
N1 - Medvedev, A.; Zhukova, O.; Enikeev, N.; Kazykhanov, V.; Timofeev, V.; Murashkin, M. The Effect of Casting Technique and Severe Straining on the Microstructure, Electrical Conductivity, Mechanical Properties and Thermal Stability of the Al–1.7 wt.% Fe Alloy. Materials 2023, 16, 3067. https://doi.org/10.3390/ma16083067
PY - 2023/4/13
Y1 - 2023/4/13
N2 - This paper features the changes in microstructure and properties of an Al–Fe alloy produced by casting with different solidification rates followed by severe plastic deformation and rolling. Particularly, different states of the as-cast Al–1.7 wt.% Fe alloy, obtained by conventional casting into a graphite mold (CC) and continuous casting into an electromagnetic mold (EMC), as well as after equal-channel angular pressing and subsequent cold rolling, were studied. Due to crystallization during casting into a graphite mold, particles of the Al6Fe phase are predominantly formed in the cast alloy, while casting into an electromagnetic mold leads to the formation of a mixture of particles, predominantly of the Al2Fe phase. The implementation of the two-stage processing by equal-channel angular pressing and cold rolling through the subsequent development of the ultrafine-grained structures ensured the achievement of the tensile strength and electrical conductivity of 257 MPa and 53.3% IACS in the CC alloy and 298 MPa and 51.3% IACS in the EMC alloy, respectively. Additional cold rolling led to a further reduction in grain size and refinement of particles in the second phase, making it possible to maintain a high level of strength after annealing at 230 °C for 1 h. The combination of high mechanical strength, electrical conductivity, and thermal stability can make these Al–Fe alloys a promising conductor material in addition to the commercial Al–Mg–Si and Al–Zr systems, depending on the evaluation of engineering cost and efficiency in industrial production.
AB - This paper features the changes in microstructure and properties of an Al–Fe alloy produced by casting with different solidification rates followed by severe plastic deformation and rolling. Particularly, different states of the as-cast Al–1.7 wt.% Fe alloy, obtained by conventional casting into a graphite mold (CC) and continuous casting into an electromagnetic mold (EMC), as well as after equal-channel angular pressing and subsequent cold rolling, were studied. Due to crystallization during casting into a graphite mold, particles of the Al6Fe phase are predominantly formed in the cast alloy, while casting into an electromagnetic mold leads to the formation of a mixture of particles, predominantly of the Al2Fe phase. The implementation of the two-stage processing by equal-channel angular pressing and cold rolling through the subsequent development of the ultrafine-grained structures ensured the achievement of the tensile strength and electrical conductivity of 257 MPa and 53.3% IACS in the CC alloy and 298 MPa and 51.3% IACS in the EMC alloy, respectively. Additional cold rolling led to a further reduction in grain size and refinement of particles in the second phase, making it possible to maintain a high level of strength after annealing at 230 °C for 1 h. The combination of high mechanical strength, electrical conductivity, and thermal stability can make these Al–Fe alloys a promising conductor material in addition to the commercial Al–Mg–Si and Al–Zr systems, depending on the evaluation of engineering cost and efficiency in industrial production.
KW - Al–Fe alloys
KW - electromagnetic mold
KW - severe plastic deformation
KW - equal channel angular pressing
KW - Cold rolling
KW - ultrafine grain structure
KW - mechanical properties
KW - electrical conductivity
KW - thermal stability
KW - cold rolling
UR - https://www.mdpi.com/1996-1944/16/8/3067
UR - https://www.mendeley.com/catalogue/00148f2d-8aa4-3b79-9b2b-662b7c2b8180/
U2 - 10.3390/ma16083067
DO - 10.3390/ma16083067
M3 - Article
VL - 16
JO - Materials
JF - Materials
SN - 1996-1944
IS - 8
M1 - 3067
ER -
ID: 104250527