Research output: Contribution to journal › Article › peer-review
The effect of nonlinear terms in boundary perturbation method on stress concentration near the nanopatterned bimaterial interface. / Шувалов, Глеб Михайлович; Вакаева, Александра Борисовна; Шамсутдинов, Денис Алексеевич; Костырко, Сергей Алексеевич.
In: Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления, Vol. 16, No. 2, 2020, p. 165-176.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - The effect of nonlinear terms in boundary perturbation method on stress concentration near the nanopatterned bimaterial interface.
AU - Шувалов, Глеб Михайлович
AU - Вакаева, Александра Борисовна
AU - Шамсутдинов, Денис Алексеевич
AU - Костырко, Сергей Алексеевич
PY - 2020
Y1 - 2020
N2 - Based on the Gurtin-Murdoch surface/interface elasticity theory, the article investigates the effect of nonlinear terms in the boundary perturbation method on stress concentration near the curvilinear bimaterial interface taking into account plane strain conditions. The authors consider the 2D boundary value problem for the infinite two-component plane under uniaxial tension. The interface domain is assumed to be a negligibly thin layer with the elastic properties differing from those of the bulk materials. Using the boundary perturbation method, the authors determined a semi-analytical solution taking into account non-linear approximations. In order to verify this solution, the corresponding boundary value problem was solved using the finite element method where the interface layer is modelled by the truss elements. It was shown that the effect of the amplitude-to-wavelength ratio of surface undulation on the stress concentration is nonlinear. This should be taken into account even for small perturbations. It was
AB - Based on the Gurtin-Murdoch surface/interface elasticity theory, the article investigates the effect of nonlinear terms in the boundary perturbation method on stress concentration near the curvilinear bimaterial interface taking into account plane strain conditions. The authors consider the 2D boundary value problem for the infinite two-component plane under uniaxial tension. The interface domain is assumed to be a negligibly thin layer with the elastic properties differing from those of the bulk materials. Using the boundary perturbation method, the authors determined a semi-analytical solution taking into account non-linear approximations. In order to verify this solution, the corresponding boundary value problem was solved using the finite element method where the interface layer is modelled by the truss elements. It was shown that the effect of the amplitude-to-wavelength ratio of surface undulation on the stress concentration is nonlinear. This should be taken into account even for small perturbations. It was
KW - 2D problem
KW - bimaterial composites
KW - Boundary perturbation method
KW - finite element method
KW - Interface nano-asperities
KW - Interface stress
KW - nanomaterials
KW - size-effect
KW - межфазное напряжение
KW - метод возмущений
KW - метод конечных элементов
KW - наноматериалы
KW - плоская задача теории упругости
KW - 2D problem
KW - bimaterial composites
KW - Boundary perturbation method
KW - finite element method
KW - Interface nano-asperities
KW - Interface stress
KW - nanomaterials
KW - size-effect
KW - межфазное напряжение
KW - метод возмущений
KW - метод конечных элементов
KW - наноматериалы
KW - плоская задача теории упругости
M3 - Article
VL - 16
SP - 165
EP - 176
JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ
JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ
SN - 1811-9905
IS - 2
ER -
ID: 78565058