Research output: Contribution to journal › Article › peer-review
The discrete spectrum of cross-shaped waveguides. / Bakharev, F. L.; Matveenko, S. G.; Nazarov, S. A.
In: St. Petersburg Mathematical Journal, Vol. 28, No. 2, 01.01.2017, p. 171-180.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - The discrete spectrum of cross-shaped waveguides
AU - Bakharev, F. L.
AU - Matveenko, S. G.
AU - Nazarov, S. A.
PY - 2017/1/1
Y1 - 2017/1/1
N2 - The discrete spectrum of the Dirichlet problem for the Laplace operator on the union of two circular unit cylinders whose axes intersect at the right angle consists of a single eigenvalue. For the threshold value of the spectral parameter, this problem has no bounded solutions. When the angle between the axes reduces, the multiplicity of the discrete spectrum grows unboundedly.
AB - The discrete spectrum of the Dirichlet problem for the Laplace operator on the union of two circular unit cylinders whose axes intersect at the right angle consists of a single eigenvalue. For the threshold value of the spectral parameter, this problem has no bounded solutions. When the angle between the axes reduces, the multiplicity of the discrete spectrum grows unboundedly.
KW - Cross-shaped quantum waveguide
KW - Discrete spectrum multiplicity
KW - Stabilizing solution at the threshold of the continuous spectrum
UR - http://www.scopus.com/inward/record.url?scp=85013399413&partnerID=8YFLogxK
UR - https://www.elibrary.ru/item.asp?id=29480946
U2 - 10.1090/spmj/1444
DO - 10.1090/spmj/1444
M3 - Article
AN - SCOPUS:85013399413
VL - 28
SP - 171
EP - 180
JO - St. Petersburg Mathematical Journal
JF - St. Petersburg Mathematical Journal
SN - 1061-0022
IS - 2
ER -
ID: 34905699