Standard

The arithmetic of the lubin-tate formal module in a multidimensional complete field. / Bekker, B.M.; Vostokov, S.V.

In: St. Petersburg Mathematical Journal, Vol. 26, No. 6, 2015, p. 859-865.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

Bekker, B.M. ; Vostokov, S.V. / The arithmetic of the lubin-tate formal module in a multidimensional complete field. In: St. Petersburg Mathematical Journal. 2015 ; Vol. 26, No. 6. pp. 859-865.

BibTeX

@article{fd8213b9b04d4d838401503c271e4805,
title = "The arithmetic of the lubin-tate formal module in a multidimensional complete field",
abstract = "{\textcopyright} 2015. In the first part of the paper devoted to the derivation of an explicit formula for the Hilbert symbol in a complete multidimensional field, primary elements and the Shafarevich basis for Lubin-Tate formal modules are constructed, which is the crucial point in the construction of explicit formulas.",
author = "B.M. Bekker and S.V. Vostokov",
year = "2015",
doi = "10.1090/spmj/1363",
language = "English",
volume = "26",
pages = "859--865",
journal = "St. Petersburg Mathematical Journal",
issn = "1061-0022",
publisher = "American Mathematical Society",
number = "6",

}

RIS

TY - JOUR

T1 - The arithmetic of the lubin-tate formal module in a multidimensional complete field

AU - Bekker, B.M.

AU - Vostokov, S.V.

PY - 2015

Y1 - 2015

N2 - © 2015. In the first part of the paper devoted to the derivation of an explicit formula for the Hilbert symbol in a complete multidimensional field, primary elements and the Shafarevich basis for Lubin-Tate formal modules are constructed, which is the crucial point in the construction of explicit formulas.

AB - © 2015. In the first part of the paper devoted to the derivation of an explicit formula for the Hilbert symbol in a complete multidimensional field, primary elements and the Shafarevich basis for Lubin-Tate formal modules are constructed, which is the crucial point in the construction of explicit formulas.

U2 - 10.1090/spmj/1363

DO - 10.1090/spmj/1363

M3 - Article

VL - 26

SP - 859

EP - 865

JO - St. Petersburg Mathematical Journal

JF - St. Petersburg Mathematical Journal

SN - 1061-0022

IS - 6

ER -

ID: 3986882