Standard

Temperature-Independent Fermi Surface in the Kondo Lattice YbRh2Si2. / Kummer, K.; Patil, S.; Chikina, A.; Guettler, M.; Hoeppner, M.; Generalov, A.; Danzenbaecher, S.; Seiro, S.; Hannaske, A.; Krellner, C.; Kucherenko, Yu.; Shi, M.; Radovic, M.; Rienks, E.; Zwicknagl, G.; Matho, K.; Allen, J. W.; Laubschat, C.; Geibel, C.; Vyalikh, D. V.

In: Physical Review X, Vol. 5, No. 1, 2015.

Research output: Contribution to journalArticlepeer-review

Harvard

Kummer, K, Patil, S, Chikina, A, Guettler, M, Hoeppner, M, Generalov, A, Danzenbaecher, S, Seiro, S, Hannaske, A, Krellner, C, Kucherenko, Y, Shi, M, Radovic, M, Rienks, E, Zwicknagl, G, Matho, K, Allen, JW, Laubschat, C, Geibel, C & Vyalikh, DV 2015, 'Temperature-Independent Fermi Surface in the Kondo Lattice YbRh2Si2', Physical Review X, vol. 5, no. 1. https://doi.org/10.1103/PhysRevX.5.011028

APA

Kummer, K., Patil, S., Chikina, A., Guettler, M., Hoeppner, M., Generalov, A., Danzenbaecher, S., Seiro, S., Hannaske, A., Krellner, C., Kucherenko, Y., Shi, M., Radovic, M., Rienks, E., Zwicknagl, G., Matho, K., Allen, J. W., Laubschat, C., Geibel, C., & Vyalikh, D. V. (2015). Temperature-Independent Fermi Surface in the Kondo Lattice YbRh2Si2. Physical Review X, 5(1). https://doi.org/10.1103/PhysRevX.5.011028

Vancouver

Kummer K, Patil S, Chikina A, Guettler M, Hoeppner M, Generalov A et al. Temperature-Independent Fermi Surface in the Kondo Lattice YbRh2Si2. Physical Review X. 2015;5(1). https://doi.org/10.1103/PhysRevX.5.011028

Author

Kummer, K. ; Patil, S. ; Chikina, A. ; Guettler, M. ; Hoeppner, M. ; Generalov, A. ; Danzenbaecher, S. ; Seiro, S. ; Hannaske, A. ; Krellner, C. ; Kucherenko, Yu. ; Shi, M. ; Radovic, M. ; Rienks, E. ; Zwicknagl, G. ; Matho, K. ; Allen, J. W. ; Laubschat, C. ; Geibel, C. ; Vyalikh, D. V. / Temperature-Independent Fermi Surface in the Kondo Lattice YbRh2Si2. In: Physical Review X. 2015 ; Vol. 5, No. 1.

BibTeX

@article{931857176a114512beba1e0d4f42d0ae,
title = "Temperature-Independent Fermi Surface in the Kondo Lattice YbRh2Si2",
abstract = "Strongly correlated electron systems are one of the central topics in contemporary solid-state physics. Prominent examples for such systems are Kondo lattices, i.e., intermetallic materials in which below a critical temperature, the Kondo temperature T-K, the magnetic moments become quenched and the effective masses of the conduction electrons approach the mass of a proton. In Ce-and Yb-based systems, this so-called heavy-fermion behavior is caused by interactions between the strongly localized 4f and itinerant electrons. A major and very controversially discussed issue in this context is how the localized electronic degree of freedom gets involved in the Fermi surface (FS) upon increasing the interaction between both kinds of electrons or upon changing the temperature. In this paper, we show that the FS of a prototypic Kondo lattice, YbRh2Si2, does not change its size or shape in a wide temperature range extending from well below to far above the single-ion Kondo temperature T-K similar to 25 K of this syste",
author = "K. Kummer and S. Patil and A. Chikina and M. Guettler and M. Hoeppner and A. Generalov and S. Danzenbaecher and S. Seiro and A. Hannaske and C. Krellner and Yu. Kucherenko and M. Shi and M. Radovic and E. Rienks and G. Zwicknagl and K. Matho and Allen, {J. W.} and C. Laubschat and C. Geibel and Vyalikh, {D. V.}",
year = "2015",
doi = "10.1103/PhysRevX.5.011028",
language = "English",
volume = "5",
journal = "Physical Review X",
issn = "2160-3308",
publisher = "American Physical Society",
number = "1",

}

RIS

TY - JOUR

T1 - Temperature-Independent Fermi Surface in the Kondo Lattice YbRh2Si2

AU - Kummer, K.

AU - Patil, S.

AU - Chikina, A.

AU - Guettler, M.

AU - Hoeppner, M.

AU - Generalov, A.

AU - Danzenbaecher, S.

AU - Seiro, S.

AU - Hannaske, A.

AU - Krellner, C.

AU - Kucherenko, Yu.

AU - Shi, M.

AU - Radovic, M.

AU - Rienks, E.

AU - Zwicknagl, G.

AU - Matho, K.

AU - Allen, J. W.

AU - Laubschat, C.

AU - Geibel, C.

AU - Vyalikh, D. V.

PY - 2015

Y1 - 2015

N2 - Strongly correlated electron systems are one of the central topics in contemporary solid-state physics. Prominent examples for such systems are Kondo lattices, i.e., intermetallic materials in which below a critical temperature, the Kondo temperature T-K, the magnetic moments become quenched and the effective masses of the conduction electrons approach the mass of a proton. In Ce-and Yb-based systems, this so-called heavy-fermion behavior is caused by interactions between the strongly localized 4f and itinerant electrons. A major and very controversially discussed issue in this context is how the localized electronic degree of freedom gets involved in the Fermi surface (FS) upon increasing the interaction between both kinds of electrons or upon changing the temperature. In this paper, we show that the FS of a prototypic Kondo lattice, YbRh2Si2, does not change its size or shape in a wide temperature range extending from well below to far above the single-ion Kondo temperature T-K similar to 25 K of this syste

AB - Strongly correlated electron systems are one of the central topics in contemporary solid-state physics. Prominent examples for such systems are Kondo lattices, i.e., intermetallic materials in which below a critical temperature, the Kondo temperature T-K, the magnetic moments become quenched and the effective masses of the conduction electrons approach the mass of a proton. In Ce-and Yb-based systems, this so-called heavy-fermion behavior is caused by interactions between the strongly localized 4f and itinerant electrons. A major and very controversially discussed issue in this context is how the localized electronic degree of freedom gets involved in the Fermi surface (FS) upon increasing the interaction between both kinds of electrons or upon changing the temperature. In this paper, we show that the FS of a prototypic Kondo lattice, YbRh2Si2, does not change its size or shape in a wide temperature range extending from well below to far above the single-ion Kondo temperature T-K similar to 25 K of this syste

U2 - 10.1103/PhysRevX.5.011028

DO - 10.1103/PhysRevX.5.011028

M3 - Article

VL - 5

JO - Physical Review X

JF - Physical Review X

SN - 2160-3308

IS - 1

ER -

ID: 4034499