Standard

Temperature Driven Phase Transition at the Antimonene/Bi2Se3 van der Waals Heterostructure. / Hogan, Conor; Holtgrewe, Kris; Ronci, Fabio; Colonna, Stefano; Sanna, Simone; Moras, Paolo; Sheverdyaeva, Polina M.; Mahatha, Sanjoy; Papagno, Marco; Aliev, Ziya S.; Babanly, Mahammad; Chulkov, Evgeni V.; Carbone, Carlo; Flammini, Roberto.

In: ACS Nano, Vol. 13, No. 9, 09.2019, p. 10481-10489.

Research output: Contribution to journalArticlepeer-review

Harvard

Hogan, C, Holtgrewe, K, Ronci, F, Colonna, S, Sanna, S, Moras, P, Sheverdyaeva, PM, Mahatha, S, Papagno, M, Aliev, ZS, Babanly, M, Chulkov, EV, Carbone, C & Flammini, R 2019, 'Temperature Driven Phase Transition at the Antimonene/Bi2Se3 van der Waals Heterostructure', ACS Nano, vol. 13, no. 9, pp. 10481-10489. https://doi.org/10.1021/acsnano.9b04377

APA

Hogan, C., Holtgrewe, K., Ronci, F., Colonna, S., Sanna, S., Moras, P., Sheverdyaeva, P. M., Mahatha, S., Papagno, M., Aliev, Z. S., Babanly, M., Chulkov, E. V., Carbone, C., & Flammini, R. (2019). Temperature Driven Phase Transition at the Antimonene/Bi2Se3 van der Waals Heterostructure. ACS Nano, 13(9), 10481-10489. https://doi.org/10.1021/acsnano.9b04377

Vancouver

Hogan C, Holtgrewe K, Ronci F, Colonna S, Sanna S, Moras P et al. Temperature Driven Phase Transition at the Antimonene/Bi2Se3 van der Waals Heterostructure. ACS Nano. 2019 Sep;13(9):10481-10489. https://doi.org/10.1021/acsnano.9b04377

Author

Hogan, Conor ; Holtgrewe, Kris ; Ronci, Fabio ; Colonna, Stefano ; Sanna, Simone ; Moras, Paolo ; Sheverdyaeva, Polina M. ; Mahatha, Sanjoy ; Papagno, Marco ; Aliev, Ziya S. ; Babanly, Mahammad ; Chulkov, Evgeni V. ; Carbone, Carlo ; Flammini, Roberto. / Temperature Driven Phase Transition at the Antimonene/Bi2Se3 van der Waals Heterostructure. In: ACS Nano. 2019 ; Vol. 13, No. 9. pp. 10481-10489.

BibTeX

@article{fc78e5b14fad4107877a1c006b624785,
title = "Temperature Driven Phase Transition at the Antimonene/Bi2Se3 van der Waals Heterostructure",
abstract = "We report the discovery of a temperature-induced phase transition between the α and β structures of antimonene. When antimony is deposited at room temperature on bismuth selenide, it forms domains of α-antimonene having different orientations with respect to the substrate. During a mild annealing, the β phase grows and prevails over the α phase, eventually forming a single domain that perfectly matches the surface lattice structure of bismuth selenide. First-principles thermodynamics calculations of this van der Waals heterostructure explain the different temperature-dependent stability of the two phases and reveal a minimum energy transition path. Although the formation energies of freestanding α- and β-antimonene only slightly differ, the β phase is ultimately favored in the annealed heterostructure due to an increased interaction with the substrate mediated by the perfect lattice match.",
keywords = "2D materials, antimonene, bismuth selenide, first-principles thermodynamics, moir{\'e} pattern, scanning tunneling microscopy, van der Waals epitaxy, moire pattern, ARSENENE, RANGE",
author = "Conor Hogan and Kris Holtgrewe and Fabio Ronci and Stefano Colonna and Simone Sanna and Paolo Moras and Sheverdyaeva, {Polina M.} and Sanjoy Mahatha and Marco Papagno and Aliev, {Ziya S.} and Mahammad Babanly and Chulkov, {Evgeni V.} and Carlo Carbone and Roberto Flammini",
year = "2019",
month = sep,
doi = "10.1021/acsnano.9b04377",
language = "English",
volume = "13",
pages = "10481--10489",
journal = "ACS Nano",
issn = "1936-0851",
publisher = "American Chemical Society",
number = "9",

}

RIS

TY - JOUR

T1 - Temperature Driven Phase Transition at the Antimonene/Bi2Se3 van der Waals Heterostructure

AU - Hogan, Conor

AU - Holtgrewe, Kris

AU - Ronci, Fabio

AU - Colonna, Stefano

AU - Sanna, Simone

AU - Moras, Paolo

AU - Sheverdyaeva, Polina M.

AU - Mahatha, Sanjoy

AU - Papagno, Marco

AU - Aliev, Ziya S.

AU - Babanly, Mahammad

AU - Chulkov, Evgeni V.

AU - Carbone, Carlo

AU - Flammini, Roberto

PY - 2019/9

Y1 - 2019/9

N2 - We report the discovery of a temperature-induced phase transition between the α and β structures of antimonene. When antimony is deposited at room temperature on bismuth selenide, it forms domains of α-antimonene having different orientations with respect to the substrate. During a mild annealing, the β phase grows and prevails over the α phase, eventually forming a single domain that perfectly matches the surface lattice structure of bismuth selenide. First-principles thermodynamics calculations of this van der Waals heterostructure explain the different temperature-dependent stability of the two phases and reveal a minimum energy transition path. Although the formation energies of freestanding α- and β-antimonene only slightly differ, the β phase is ultimately favored in the annealed heterostructure due to an increased interaction with the substrate mediated by the perfect lattice match.

AB - We report the discovery of a temperature-induced phase transition between the α and β structures of antimonene. When antimony is deposited at room temperature on bismuth selenide, it forms domains of α-antimonene having different orientations with respect to the substrate. During a mild annealing, the β phase grows and prevails over the α phase, eventually forming a single domain that perfectly matches the surface lattice structure of bismuth selenide. First-principles thermodynamics calculations of this van der Waals heterostructure explain the different temperature-dependent stability of the two phases and reveal a minimum energy transition path. Although the formation energies of freestanding α- and β-antimonene only slightly differ, the β phase is ultimately favored in the annealed heterostructure due to an increased interaction with the substrate mediated by the perfect lattice match.

KW - 2D materials

KW - antimonene

KW - bismuth selenide

KW - first-principles thermodynamics

KW - moiré pattern

KW - scanning tunneling microscopy

KW - van der Waals epitaxy

KW - moire pattern

KW - ARSENENE

KW - RANGE

UR - http://www.scopus.com/inward/record.url?scp=85072712547&partnerID=8YFLogxK

U2 - 10.1021/acsnano.9b04377

DO - 10.1021/acsnano.9b04377

M3 - Article

C2 - 31469534

AN - SCOPUS:85072712547

VL - 13

SP - 10481

EP - 10489

JO - ACS Nano

JF - ACS Nano

SN - 1936-0851

IS - 9

ER -

ID: 49495891