Standard

Temperature behavior of hot carrier dynamics in InP quantum dots. / Maleev, Artem V.; Ignatiev, Ivan V.; Gerlovin, Il’ya Ya.; Kozin, Igor E.; Masumoto, Yasuaki.

In: Physical Review B - Condensed Matter and Materials Physics, Vol. 71, No. 19, 2005, p. 195323-1-13.

Research output: Contribution to journalArticle

Harvard

Maleev, AV, Ignatiev, IV, Gerlovin, IY, Kozin, IE & Masumoto, Y 2005, 'Temperature behavior of hot carrier dynamics in InP quantum dots', Physical Review B - Condensed Matter and Materials Physics, vol. 71, no. 19, pp. 195323-1-13.

APA

Maleev, A. V., Ignatiev, I. V., Gerlovin, I. Y., Kozin, I. E., & Masumoto, Y. (2005). Temperature behavior of hot carrier dynamics in InP quantum dots. Physical Review B - Condensed Matter and Materials Physics, 71(19), 195323-1-13.

Vancouver

Maleev AV, Ignatiev IV, Gerlovin IY, Kozin IE, Masumoto Y. Temperature behavior of hot carrier dynamics in InP quantum dots. Physical Review B - Condensed Matter and Materials Physics. 2005;71(19):195323-1-13.

Author

Maleev, Artem V. ; Ignatiev, Ivan V. ; Gerlovin, Il’ya Ya. ; Kozin, Igor E. ; Masumoto, Yasuaki. / Temperature behavior of hot carrier dynamics in InP quantum dots. In: Physical Review B - Condensed Matter and Materials Physics. 2005 ; Vol. 71, No. 19. pp. 195323-1-13.

BibTeX

@article{187fef6ab017495ebafcfc227c0ecad8,
title = "Temperature behavior of hot carrier dynamics in InP quantum dots",
abstract = "Photoluminescence sPLd kinetics of the InP self-assembled quantum dots is studied under quasiresonant optical excitation in the temperature range 10–100 K. It is found that the PL rise time abruptly drops with increasing temperature. The model calculations based on the rate equations have shown that this drop cannot result from thermostimulated phonon relaxation of the hot carriers. We developed a model assuming that the main reason for variations in the PL kinetics is related to thermal ejection s“evaporation”d of holes from the quantum dots, with a fraction of the dots acquiring negative charge. The model allowed us to describe quantitatively the PL rise as well as the PL decay over the whole temperature range under study. We identified also a number of effects caused by electron evaporation from the quantum dots at temperatures above 60 K. Comparison of the results of the model calculations with the experimental data has allowed us to determine rate parameters of the ejection processes.",
author = "Maleev, {Artem V.} and Ignatiev, {Ivan V.} and Gerlovin, {Il{\textquoteright}ya Ya.} and Kozin, {Igor E.} and Yasuaki Masumoto",
year = "2005",
language = "не определен",
volume = "71",
pages = "195323--1--13",
journal = "Physical Review B-Condensed Matter",
issn = "1098-0121",
publisher = "American Physical Society",
number = "19",

}

RIS

TY - JOUR

T1 - Temperature behavior of hot carrier dynamics in InP quantum dots

AU - Maleev, Artem V.

AU - Ignatiev, Ivan V.

AU - Gerlovin, Il’ya Ya.

AU - Kozin, Igor E.

AU - Masumoto, Yasuaki

PY - 2005

Y1 - 2005

N2 - Photoluminescence sPLd kinetics of the InP self-assembled quantum dots is studied under quasiresonant optical excitation in the temperature range 10–100 K. It is found that the PL rise time abruptly drops with increasing temperature. The model calculations based on the rate equations have shown that this drop cannot result from thermostimulated phonon relaxation of the hot carriers. We developed a model assuming that the main reason for variations in the PL kinetics is related to thermal ejection s“evaporation”d of holes from the quantum dots, with a fraction of the dots acquiring negative charge. The model allowed us to describe quantitatively the PL rise as well as the PL decay over the whole temperature range under study. We identified also a number of effects caused by electron evaporation from the quantum dots at temperatures above 60 K. Comparison of the results of the model calculations with the experimental data has allowed us to determine rate parameters of the ejection processes.

AB - Photoluminescence sPLd kinetics of the InP self-assembled quantum dots is studied under quasiresonant optical excitation in the temperature range 10–100 K. It is found that the PL rise time abruptly drops with increasing temperature. The model calculations based on the rate equations have shown that this drop cannot result from thermostimulated phonon relaxation of the hot carriers. We developed a model assuming that the main reason for variations in the PL kinetics is related to thermal ejection s“evaporation”d of holes from the quantum dots, with a fraction of the dots acquiring negative charge. The model allowed us to describe quantitatively the PL rise as well as the PL decay over the whole temperature range under study. We identified also a number of effects caused by electron evaporation from the quantum dots at temperatures above 60 K. Comparison of the results of the model calculations with the experimental data has allowed us to determine rate parameters of the ejection processes.

M3 - статья

VL - 71

SP - 195323-1-13

JO - Physical Review B-Condensed Matter

JF - Physical Review B-Condensed Matter

SN - 1098-0121

IS - 19

ER -

ID: 5327858