DOI

Phosphorus is one of the key elements, which determined the emergence of primordial life on our planet. The source of prebiotic phosphorus was most likely to be easily soluble compounds containing phosphorus in the negative form of oxidation (e.g., phosphides). The present paper is the first thorough investigation of phosphide-bearing mineral assemblages confined to telluric (terrestrial) native iron from volcanic rocks of Disko Island, Greenland. Phosphorus speciation in given assemblages varies from the solid solution in native iron (up to 0.3 wt% P), different phosphides – schreibersite Fe3P, nickelphosphide Ni3P, barringerite Fe2P, and phosphates, including fluorapatite, anhydrous Fe-Na phosphates, phosphoran olivine and pyroxene (up to 1 wt% P). The diversity of observed phosphorus speciation can be explained by the steep changes of redox conditions during subsurface crystallization of iron-phosphide-bearing lavas. Based on the available data on likely redox conditions on the early Earth, we hypothesize that reactive prebiotic phosphorus may have originated from shallow crustal rocks.
Original languageEnglish
Article number101870
JournalGeoscience Frontiers
Volume15
Issue number5
Early online date21 May 2024
DOIs
StateE-pub ahead of print - 21 May 2024

    Research areas

  • Native iron, Phosphide, Prebiotic phosphorus, Reduced mineral assemblages

ID: 119845906