Standard

Tailoring the Electron and Hole Landé Factors in Lead Halide Perovskite Nanocrystals by Quantum Confinement and Halide Exchange. / Nestoklon, M. O.; Kirstein, Erik; Yakovlev, Dmitri R.; Zhukov, E.A.; Глазов, Михаил Михайлович; Semina, M. A.; Ивченко, Еугениюс Левович; Kolobkova, Elena V.; Кузнецова, Мария Сергеевна; Bayer, ‪Manfred.

In: Nano Letters, Vol. 23, No. 17, 30.08.2023, p. 8218-8224.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

Nestoklon, M. O. ; Kirstein, Erik ; Yakovlev, Dmitri R. ; Zhukov, E.A. ; Глазов, Михаил Михайлович ; Semina, M. A. ; Ивченко, Еугениюс Левович ; Kolobkova, Elena V. ; Кузнецова, Мария Сергеевна ; Bayer, ‪Manfred. / Tailoring the Electron and Hole Landé Factors in Lead Halide Perovskite Nanocrystals by Quantum Confinement and Halide Exchange. In: Nano Letters. 2023 ; Vol. 23, No. 17. pp. 8218-8224.

BibTeX

@article{9808cc74064c48e3a116e0abb0a8431f,
title = "Tailoring the Electron and Hole Land{\'e} Factors in Lead Halide Perovskite Nanocrystals by Quantum Confinement and Halide Exchange",
abstract = "The tunability of the optical properties of lead halide perovskite nanocrystals makes them highly appealing for applications. Halide anion exchange and quantum confinement enable tailoring of the band gap. For spintronics, the Land{\'e} g-factors of electrons and holes are essential. Using empirical tight-binding and k·p methods, we calculate them for nanocrystals of all-inorganic lead halide perovskites CsPbX3 (X = I, Br, Cl). The hole g-factor band gap dependence follows the universal law found for bulk perovskites, while for electrons, a considerable modification is predicted. Based on the k·p analysis, we conclude that this difference arises from the interaction of the bottom conduction band with the spin-orbit split electron states. These predictions are confirmed experimentally for electron and hole g-factors in CsPbI3 nanocrystals in a glass matrix, measured by time-resolved Faraday ellipticity in a magnetic field at cryogenic temperatures.",
keywords = "g-factors, k·p theory, nanocrystals, perovskites, tight-binding method, time-resolved Faraday spectroscopy",
author = "Nestoklon, {M. O.} and Erik Kirstein and Yakovlev, {Dmitri R.} and E.A. Zhukov and Глазов, {Михаил Михайлович} and Semina, {M. A.} and Ивченко, {Еугениюс Левович} and Kolobkova, {Elena V.} and Кузнецова, {Мария Сергеевна} and ‪Manfred Bayer",
year = "2023",
month = aug,
day = "30",
doi = "10.1021/acs.nanolett.3c02349",
language = "English",
volume = "23",
pages = "8218--8224",
journal = "Nano Letters",
issn = "1530-6984",
publisher = "American Chemical Society",
number = "17",

}

RIS

TY - JOUR

T1 - Tailoring the Electron and Hole Landé Factors in Lead Halide Perovskite Nanocrystals by Quantum Confinement and Halide Exchange

AU - Nestoklon, M. O.

AU - Kirstein, Erik

AU - Yakovlev, Dmitri R.

AU - Zhukov, E.A.

AU - Глазов, Михаил Михайлович

AU - Semina, M. A.

AU - Ивченко, Еугениюс Левович

AU - Kolobkova, Elena V.

AU - Кузнецова, Мария Сергеевна

AU - Bayer, ‪Manfred

PY - 2023/8/30

Y1 - 2023/8/30

N2 - The tunability of the optical properties of lead halide perovskite nanocrystals makes them highly appealing for applications. Halide anion exchange and quantum confinement enable tailoring of the band gap. For spintronics, the Landé g-factors of electrons and holes are essential. Using empirical tight-binding and k·p methods, we calculate them for nanocrystals of all-inorganic lead halide perovskites CsPbX3 (X = I, Br, Cl). The hole g-factor band gap dependence follows the universal law found for bulk perovskites, while for electrons, a considerable modification is predicted. Based on the k·p analysis, we conclude that this difference arises from the interaction of the bottom conduction band with the spin-orbit split electron states. These predictions are confirmed experimentally for electron and hole g-factors in CsPbI3 nanocrystals in a glass matrix, measured by time-resolved Faraday ellipticity in a magnetic field at cryogenic temperatures.

AB - The tunability of the optical properties of lead halide perovskite nanocrystals makes them highly appealing for applications. Halide anion exchange and quantum confinement enable tailoring of the band gap. For spintronics, the Landé g-factors of electrons and holes are essential. Using empirical tight-binding and k·p methods, we calculate them for nanocrystals of all-inorganic lead halide perovskites CsPbX3 (X = I, Br, Cl). The hole g-factor band gap dependence follows the universal law found for bulk perovskites, while for electrons, a considerable modification is predicted. Based on the k·p analysis, we conclude that this difference arises from the interaction of the bottom conduction band with the spin-orbit split electron states. These predictions are confirmed experimentally for electron and hole g-factors in CsPbI3 nanocrystals in a glass matrix, measured by time-resolved Faraday ellipticity in a magnetic field at cryogenic temperatures.

KW - g-factors

KW - k·p theory

KW - nanocrystals

KW - perovskites

KW - tight-binding method

KW - time-resolved Faraday spectroscopy

UR - https://www.mendeley.com/catalogue/dd18c781-eb69-381b-b4e1-d7539e082016/

U2 - 10.1021/acs.nanolett.3c02349

DO - 10.1021/acs.nanolett.3c02349

M3 - Article

VL - 23

SP - 8218

EP - 8224

JO - Nano Letters

JF - Nano Letters

SN - 1530-6984

IS - 17

ER -

ID: 111014852