Background/Objectives: G protein-coupled trace amine-associated receptors (TAARs) belong to a family of biogenic amine-sensing receptors. TAAR1 is the best-investigated receptor of this family, and TAAR1 agonists are already being tested in clinical studies for the treatment of schizophrenia, anxiety, and depression. Meanwhile, other TAARs (TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9 in humans) are mostly known for their olfactory function, sensing innate odors. At the same time, there is growing evidence that these receptors may also be involved in brain function. TAAR8 is the least studied TAAR family member, and currently, there is no data on its function in the mammalian central nervous system. Methods: We generated triple knockout (tTAAR8-KO) mice lacking all murine Taar8 isoforms ( Taar8a, Taar8b, and Taar8c) using CRISPR-Cas9 technology. In this study, we performed the first phenotyping of tTAAR8-KO mice for behavioral, electrophysiological, and neurochemical characteristics. Results: During the study, we found a number of alterations specific to tTAAR8-KO mice compared to controls. tTAAR8-KO mice demonstrated better short-term memory, more depressive-like behavior, and higher body temperature. Also, we observed changes in the dopaminergic system, brain electrophysiological activity, and adult neurogenic functions in mice lacking Taar8 isoforms. Conclusions: Based on the data obtained, it can be assumed that the physiological TAAR8 role is not limited only to the innate olfactory function, as previously proposed. TAAR8 could be involved in brain function, in particular in dopamine function regulation.

Original languageEnglish
Article number1391
JournalBiomedicines
Volume13
Issue number6
DOIs
StatePublished - 6 Jun 2025

ID: 136424863