Standard

Szegő Condition and Scattering for One-Dimensional Dirac Operators. / Bessonov, R. V.

In: Constructive Approximation, 19.10.2018.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

BibTeX

@article{d20da4cb654d4495b85afc73a455f38a,
title = "Szeg{\H o} Condition and Scattering for One-Dimensional Dirac Operators",
abstract = "We prove the existence of modified wave operators for one-dimensional Dirac operators whose spectral measures belong to the Szeg{\H o} class on the real line.",
keywords = "Dirac system, Szeg{\H o} class, Wave operators",
author = "Bessonov, {R. V.}",
year = "2018",
month = oct,
day = "19",
doi = "10.1007/s00365-018-9453-3",
language = "English",
journal = "Constructive Approximation",
issn = "0176-4276",
publisher = "Springer Nature",

}

RIS

TY - JOUR

T1 - Szegő Condition and Scattering for One-Dimensional Dirac Operators

AU - Bessonov, R. V.

PY - 2018/10/19

Y1 - 2018/10/19

N2 - We prove the existence of modified wave operators for one-dimensional Dirac operators whose spectral measures belong to the Szegő class on the real line.

AB - We prove the existence of modified wave operators for one-dimensional Dirac operators whose spectral measures belong to the Szegő class on the real line.

KW - Dirac system

KW - Szegő class

KW - Wave operators

UR - http://www.scopus.com/inward/record.url?scp=85055533891&partnerID=8YFLogxK

U2 - 10.1007/s00365-018-9453-3

DO - 10.1007/s00365-018-9453-3

M3 - Article

AN - SCOPUS:85055533891

JO - Constructive Approximation

JF - Constructive Approximation

SN - 0176-4276

ER -

ID: 36320889