• V. E. Pavlov
  • A. M. Pasenko
  • A. V. Shatsillo
  • V. I. Powerman
  • V. V. Shcherbakova
  • S. V. Malyshev

Representative paleomagnetic collections of Lower Cambrian rocks from the northern and eastern regions of the Siberian platform are studied. New evidence demonstrating the anomalous character of the paleomagnetic record in these rocks is obtained. These data confidently support the hypothesis (Pavlov et al., 2004) that in the substantial part of the Lower Cambrian section of the Siberian platform there are two stable high-temperature magnetization components having significantly different directions, each of which is eligible for being a primary component that was formed, at the latest, in the Early Cambrian. The analysis of the world’s paleomagnetic data for this interval of the geological history shows that the peculiarities observed in Siberia in the paleomagnetic record for the Precambrian–Phanerozoic boundary are global, inconsistent with the traditional notion of a paleomagnetic record as reflecting the predominant axial dipole component of the geomagnetic field, and necessitates the assumption that the geomagnetic field at the Proterozoic–Phanerozoic boundary (Ediacaran–Lower Cambrian) substantially differed from the field of most of the other geological epochs. In order to explain the observed paleomagnetic record, we propose a hypothesis suggesting that the geomagnetic field at the Precambrian–Cambrian boundary had an anomalous character. This field was characterized by the presence of two alternating quasi-stable generation regimes. According to our hypothesis, the magnetic field at the Precambrian–Cambrian boundary can be described by the alternation of long periods dominated by an axial, mainly monopolar dipole field and relatively short epochs, lasting a few hundred kA, with the prevalence of the near-equatorial or midlatitude dipole. The proposed hypothesis agrees with the data obtained from studies of the transitional fields of Paleozoic reversals (Khramov and Iosifidi, 2012) and with the results of geodynamo numerical simulations (Aubert and Wicht, 2004; Glatzmayer and Olson, 2005; Gissinger et al., 2012).

Original languageEnglish
Pages (from-to)782-805
Number of pages24
JournalIzvestiya, Physics of the Solid Earth
Volume54
Issue number5
DOIs
StatePublished - 5 Sep 2018

    Scopus subject areas

  • Environmental Science(all)
  • Earth and Planetary Sciences(all)

ID: 35672570