The paper describes our approach to the task of sentiment analysis of tweets within SentiRuEval—an open evaluation of sentiment analysis systems for the Russian language. We took part in the task of object-oriented sentiment analysis of Russian tweets concerning two types of organizations: banks and telecommunications companies. On both datasets, the participants were required to perform a three-way classification of tweets: positive, negative or neutral. We used various statistical methods as basis for our machine learning algorithms and checked which features would provide the best results. Syntactic relations proved to be a crucial feature to any statistical method evaluated, but SVM-based classification performed better than the others. Normalized words are another important feature for the algorithm. The evaluation revealed that our method proved to be rather successful: we scored the first in three out of four evaluation measures.
Translated title of the contributionСентиментный анализ твитов на основе синтаксических связей
Original languageEnglish
Title of host publicationКомпьютерная лингвистика и интеллектуальные технологии
Subtitle of host publicationПо материалам ежегодной Международной конференции «Диалог» (Москва, 27–30 мая 2015 г.). Вып. 14 (21): В 2 т. Т. 2: Доклады специальных секций
Place of PublicationМ
PublisherРоссийский государственный гуманитарный университет
Pages1-11
StatePublished - 2015
EventМеждународная конференция "Диалог - 2015" - Москва, Russian Federation
Duration: 27 May 201530 May 2015

Conference

ConferenceМеждународная конференция "Диалог - 2015"
Country/TerritoryRussian Federation
CityМосква
Period27/05/1530/05/15

    Research areas

  • Sentiment analysis, syntactical relations, statistical methods, text classification

ID: 4787019