Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Research › peer-review
Symbolic Presentation of Nonlinear Dynamic Systems in Terms of Lego-Objects. / Sboeva, E. ; Andrianov, S. ; Ivanov, A. ; Krushinevskii, E. .
Proceedings of the 9th International Particle Accelerator Conference. ed. / Shane Koscielniak; Todd Satogata; Volker RW Schaa; Jana Thomson. Geneva, Switzerland : JACoW, 2018. p. 3441-3443.Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Research › peer-review
}
TY - GEN
T1 - Symbolic Presentation of Nonlinear Dynamic Systems in Terms of Lego-Objects
AU - Sboeva, E.
AU - Andrianov, S.
AU - Ivanov, A.
AU - Krushinevskii, E.
PY - 2018/6
Y1 - 2018/6
N2 - In this paper we propose a symbolic representation of the solutions of the equations of evolution of dynamical systems in the framework of matrix formalism and Lie algebra for a number of elements of the accelerator (in particular, dipole, quadrupole and octupole) up to the 4th order. The considered solutions are Lego-objects*, which are include into the general scheme of the representation beam dynamics. It allows modeling of schemes of various accelerators and thereby to increasing performance of parametrical optimization. Let us note that the symbolic approach to solving such problems is more preferable than the numerical one, which is widely used. This leads to a reduction in the time and resources spent on solving optimization problems, as well as the ability to create universal Lego objects. The paper considers the verification of the obtained formulas from the experimental data. The corresponding Lego objects are the main components of the special software for both symbolic and numerical dynamics analysis. This software is planned to be used for modeling within the framework of the NICA accelerator project.
AB - In this paper we propose a symbolic representation of the solutions of the equations of evolution of dynamical systems in the framework of matrix formalism and Lie algebra for a number of elements of the accelerator (in particular, dipole, quadrupole and octupole) up to the 4th order. The considered solutions are Lego-objects*, which are include into the general scheme of the representation beam dynamics. It allows modeling of schemes of various accelerators and thereby to increasing performance of parametrical optimization. Let us note that the symbolic approach to solving such problems is more preferable than the numerical one, which is widely used. This leads to a reduction in the time and resources spent on solving optimization problems, as well as the ability to create universal Lego objects. The paper considers the verification of the obtained formulas from the experimental data. The corresponding Lego objects are the main components of the special software for both symbolic and numerical dynamics analysis. This software is planned to be used for modeling within the framework of the NICA accelerator project.
KW - quadrupole
KW - octupole
KW - database
KW - controls
KW - dipole
U2 - 10.18429/JACoW-IPAC2018-THPAK090
DO - 10.18429/JACoW-IPAC2018-THPAK090
M3 - Conference contribution
SN - 978-3-95450-184-7
SP - 3441
EP - 3443
BT - Proceedings of the 9th International Particle Accelerator Conference
A2 - Koscielniak, Shane
A2 - Satogata, Todd
A2 - Schaa, Volker RW
A2 - Thomson, Jana
PB - JACoW
CY - Geneva, Switzerland
T2 - 9th International Particle Accelerator Conference
Y2 - 29 April 2018 through 4 May 2018
ER -
ID: 47569438