Research output: Contribution to journal › Article › peer-review
Herein, the ultrafine-grained (UFG) 7xxx series alloy Al–4.8Zn–1.2Mg–0.14Zr demonstrates superplasticity at unusually low temperatures of 120–170 °C while maintaining its high-strength state. The UFG structure is formed by high pressure torsion (HPT) at room temperature (RT), which leads to a considerable increase in the strength characteristics by ≈60% compared with the material after conventional heat treatment T6. It is found that the UFG alloy exhibits thermostability when testing or annealing up to 170 °C. Deforming by tensile test at a strain rate of 10−4 s−1 and 10−3 s−1, the elongation to failure at 120 and 170 °C exceeds 250% and 500%, respectively, whereas the strain rate sensitivity reaches 0.45, which is a typical value characterizing superplastic deformation. After superplastic deformation, the UFG alloy maintains 25–50% higher strength characteristics at RT than that after conventional heat treatment T6. The origin of such superior behavior of the UFG alloy is discussed.
Original language | English |
---|---|
Article number | 1900555 |
Number of pages | 7 |
Journal | Advanced Engineering Materials |
DOIs | |
State | Published - 21 Aug 2019 |
ID: 48415921