Standard

Structure of the algebra generated by a noncommutative operator graph which demonstrates the superactivation phenomenon for zero-error capacity. / Amosov, G. G.; Zhdanovskii, I. Yu.

In: Mathematical Notes, Vol. 99, No. 5-6, 01.05.2016, p. 924-927.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

BibTeX

@article{f1b6dee45dff4477ac288a6348c47da0,
title = "Structure of the algebra generated by a noncommutative operator graph which demonstrates the superactivation phenomenon for zero-error capacity",
keywords = "Kraus operator, noncommutative operator graph, quantum channel, quantum state, superactivation phenomenon, von Neumann algebra",
author = "Amosov, {G. G.} and Zhdanovskii, {I. Yu}",
year = "2016",
month = may,
day = "1",
doi = "10.1134/S000143461605031X",
language = "English",
volume = "99",
pages = "924--927",
journal = "Mathematical Notes",
issn = "0001-4346",
publisher = "Pleiades Publishing",
number = "5-6",

}

RIS

TY - JOUR

T1 - Structure of the algebra generated by a noncommutative operator graph which demonstrates the superactivation phenomenon for zero-error capacity

AU - Amosov, G. G.

AU - Zhdanovskii, I. Yu

PY - 2016/5/1

Y1 - 2016/5/1

KW - Kraus operator

KW - noncommutative operator graph

KW - quantum channel

KW - quantum state

KW - superactivation phenomenon

KW - von Neumann algebra

UR - http://www.scopus.com/inward/record.url?scp=84977073685&partnerID=8YFLogxK

U2 - 10.1134/S000143461605031X

DO - 10.1134/S000143461605031X

M3 - Article

AN - SCOPUS:84977073685

VL - 99

SP - 924

EP - 927

JO - Mathematical Notes

JF - Mathematical Notes

SN - 0001-4346

IS - 5-6

ER -

ID: 41887683