Research output: Contribution to journal › Article › peer-review
Let {(Xi,Yi)}i=1,2,... be an i.i.d. sequence of bivariate random vectors with P(Y1=y)=0 for all y. Put Mn=Mn(Ln)=max0≤k≤n-Ln(X k+1++Xk+Ln)Ik,Ln, where Ik,ℓ=I{Yk+1≤≤Yk+ℓ} denotes the indicator function of the event in brackets, Ln is the largest ℓ≤n, for which Ik,ℓ=1 for some k=0,1,...,n-ℓ. If, for example, Xi=Yi, i≥1, and Xi denotes the gain in the ith repetition of a game of chance, then Mn is the maximal gain over increasing runs of maximal length Ln. We derive a strong law of large numbers and a law of iterated logarithm type result for Mn.
Original language | English |
---|---|
Pages (from-to) | 305-312 |
Number of pages | 8 |
Journal | Statistics and Probability Letters |
Volume | 50 |
Issue number | 3 |
DOIs | |
State | Published - 15 Nov 2000 |
ID: 75020743