Research output: Contribution to journal › Article › peer-review
Stochastic circular persistent currents of exciton polaritons. / Barrat, J.; Cherbunin, Roman; Sedov, Evgeny; Aladinskaia, Ekaterina; Liubomirov, Alexey; Litvyak, Valentina; Petrov, Mikhail; Zhou, Xiaoqing; Hatzopoulos, Z.; Kavokin, Alexey; Savvidis, P. G.
In: Scientific Reports, Vol. 14, No. 1, 14, 01.12.2024, p. 12953.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Stochastic circular persistent currents of exciton polaritons
AU - Barrat, J.
AU - Cherbunin, Roman
AU - Sedov, Evgeny
AU - Aladinskaia, Ekaterina
AU - Liubomirov, Alexey
AU - Litvyak, Valentina
AU - Petrov, Mikhail
AU - Zhou, Xiaoqing
AU - Hatzopoulos, Z.
AU - Kavokin, Alexey
AU - Savvidis, P. G.
PY - 2024/12/1
Y1 - 2024/12/1
N2 - We keep track of the orbital degree of freedom of an exciton polariton condensate, confined in an optical trap, and reveal the stochastic switching of persistent annular polariton currents in the pulse-periodic excitation this http URL an elliptic trap, the low-lying in energy polariton current states are inherent in a two-petalled density distribution and swirling phase. In the stochastic regime, the averaged over multiple excitation pulses density distribution gets homogenised in the azimuthal direction, while the weighted phase extracted from interference experiments experiences two compensating each other jumps, when varying around the center of the trap. Breaking the reciprocity of the system with a supplemental control optical pulse makes it possible to switch the system from the stochastic regime to the deterministic regime of an arbitrary polariton circulation.
AB - We keep track of the orbital degree of freedom of an exciton polariton condensate, confined in an optical trap, and reveal the stochastic switching of persistent annular polariton currents in the pulse-periodic excitation this http URL an elliptic trap, the low-lying in energy polariton current states are inherent in a two-petalled density distribution and swirling phase. In the stochastic regime, the averaged over multiple excitation pulses density distribution gets homogenised in the azimuthal direction, while the weighted phase extracted from interference experiments experiences two compensating each other jumps, when varying around the center of the trap. Breaking the reciprocity of the system with a supplemental control optical pulse makes it possible to switch the system from the stochastic regime to the deterministic regime of an arbitrary polariton circulation.
UR - https://www.mendeley.com/catalogue/888366e7-2758-3412-b8ec-c56cdd71daca/
U2 - 10.1038/s41598-024-63725-1
DO - 10.1038/s41598-024-63725-1
M3 - Article
VL - 14
SP - 12953
JO - Scientific Reports
JF - Scientific Reports
SN - 2045-2322
IS - 1
M1 - 14
ER -
ID: 99627629