Research output: Contribution to journal › Article › peer-review
Statistical symmetry restoration in fully developed turbulence: Renormalization group analysis of two models. / Гулицкий, Николай Михайлович; Антонов, Николай Викторович; Костенко, Мария Михайловна; Малышев, Алексей Владимирович.
In: Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, Vol. 97, No. 3, 033101, 01.03.2018, p. 033101.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Statistical symmetry restoration in fully developed turbulence: Renormalization group analysis of two models
AU - Гулицкий, Николай Михайлович
AU - Антонов, Николай Викторович
AU - Костенко, Мария Михайловна
AU - Малышев, Алексей Владимирович
N1 - Funding Information: The authors are indebted to Mikhail V. Kompaniets and Igor Altsybeev for discussions and to Tomáš Lučivjanský for critical reading of the manuscript. N.M.G. acknowledges support from the Saint Petersburg Committee of Science and High School. M.M.K. was supported by the Basis Foundation. APPENDIX A:
PY - 2018/3/1
Y1 - 2018/3/1
N2 - In this paper we consider the model of incompressible fluid described by the stochastic Navier-Stokes equation with finite correlation time of a random force. Inertial-range asymptotic behavior of fully developed turbulence is studied by means of the field theoretic renormalization group within the one-loop approximation. It is corroborated that regardless of the values of model parameters and initial data the inertial-range behavior of the model is described by the limiting case of vanishing correlation time. This indicates that the Galilean symmetry of the model violated by the "colored" random force is restored in the inertial range. This regime corresponds to the only nontrivial fixed point of the renormalization group equation. The stability of this point depends on the relation between the exponents in the energy spectrum Ek1-y and the dispersion law ωk2-η. The second analyzed problem is the passive advection of a scalar field by this velocity ensemble. Correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. We demonstrate that in accordance with Kolmogorov's hypothesis of the local symmetry restoration the main contribution to the operator product expansion is given by the isotropic operator, while anisotropic terms should be considered only as corrections.
AB - In this paper we consider the model of incompressible fluid described by the stochastic Navier-Stokes equation with finite correlation time of a random force. Inertial-range asymptotic behavior of fully developed turbulence is studied by means of the field theoretic renormalization group within the one-loop approximation. It is corroborated that regardless of the values of model parameters and initial data the inertial-range behavior of the model is described by the limiting case of vanishing correlation time. This indicates that the Galilean symmetry of the model violated by the "colored" random force is restored in the inertial range. This regime corresponds to the only nontrivial fixed point of the renormalization group equation. The stability of this point depends on the relation between the exponents in the energy spectrum Ek1-y and the dispersion law ωk2-η. The second analyzed problem is the passive advection of a scalar field by this velocity ensemble. Correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. We demonstrate that in accordance with Kolmogorov's hypothesis of the local symmetry restoration the main contribution to the operator product expansion is given by the isotropic operator, while anisotropic terms should be considered only as corrections.
KW - Renormalization Group
KW - turbulence
UR - http://www.scopus.com/inward/record.url?scp=85044141488&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.97.033101
DO - 10.1103/PhysRevE.97.033101
M3 - Article
VL - 97
SP - 033101
JO - Physical Review E
JF - Physical Review E
SN - 1539-3755
IS - 3
M1 - 033101
ER -
ID: 34843683