Standard

Standard commutator formula. / Vavilov, N. A.; Stepanov, A. V.

In: Vestnik St. Petersburg University: Mathematics, Vol. 41, No. 1, 01.03.2008, p. 5-8.

Research output: Contribution to journalArticlepeer-review

Harvard

Vavilov, NA & Stepanov, AV 2008, 'Standard commutator formula', Vestnik St. Petersburg University: Mathematics, vol. 41, no. 1, pp. 5-8. https://doi.org/10.3103/S1063454108010020

APA

Vavilov, N. A., & Stepanov, A. V. (2008). Standard commutator formula. Vestnik St. Petersburg University: Mathematics, 41(1), 5-8. https://doi.org/10.3103/S1063454108010020

Vancouver

Vavilov NA, Stepanov AV. Standard commutator formula. Vestnik St. Petersburg University: Mathematics. 2008 Mar 1;41(1):5-8. https://doi.org/10.3103/S1063454108010020

Author

Vavilov, N. A. ; Stepanov, A. V. / Standard commutator formula. In: Vestnik St. Petersburg University: Mathematics. 2008 ; Vol. 41, No. 1. pp. 5-8.

BibTeX

@article{d62b4c559e15419db653bbd2b36ea8c2,
title = "Standard commutator formula",
abstract = "Let R be a commutative ring with 1, A, B ⊴ R be its ideals, GL(n, R, A) be the principal congruence subgroup of level A in GL(n, A), and E(n, R, A) be the relative elementary subgroup of level A. We prove the following commutator formula [E(n,R,A),GL(n,R,B)] = [E(n,R,A),E(n,R,B)] which generalizes known results. The proof is yet another variation on the theme of decomposition of unipotents.",
author = "Vavilov, {N. A.} and Stepanov, {A. V.}",
year = "2008",
month = mar,
day = "1",
doi = "10.3103/S1063454108010020",
language = "English",
volume = "41",
pages = "5--8",
journal = "Vestnik St. Petersburg University: Mathematics",
issn = "1063-4541",
publisher = "Pleiades Publishing",
number = "1",

}

RIS

TY - JOUR

T1 - Standard commutator formula

AU - Vavilov, N. A.

AU - Stepanov, A. V.

PY - 2008/3/1

Y1 - 2008/3/1

N2 - Let R be a commutative ring with 1, A, B ⊴ R be its ideals, GL(n, R, A) be the principal congruence subgroup of level A in GL(n, A), and E(n, R, A) be the relative elementary subgroup of level A. We prove the following commutator formula [E(n,R,A),GL(n,R,B)] = [E(n,R,A),E(n,R,B)] which generalizes known results. The proof is yet another variation on the theme of decomposition of unipotents.

AB - Let R be a commutative ring with 1, A, B ⊴ R be its ideals, GL(n, R, A) be the principal congruence subgroup of level A in GL(n, A), and E(n, R, A) be the relative elementary subgroup of level A. We prove the following commutator formula [E(n,R,A),GL(n,R,B)] = [E(n,R,A),E(n,R,B)] which generalizes known results. The proof is yet another variation on the theme of decomposition of unipotents.

UR - http://www.scopus.com/inward/record.url?scp=79952903739&partnerID=8YFLogxK

U2 - 10.3103/S1063454108010020

DO - 10.3103/S1063454108010020

M3 - Article

AN - SCOPUS:79952903739

VL - 41

SP - 5

EP - 8

JO - Vestnik St. Petersburg University: Mathematics

JF - Vestnik St. Petersburg University: Mathematics

SN - 1063-4541

IS - 1

ER -

ID: 49794141