Standard

Stacked Decomposition Theorem for Modules Over Serial Left Noetherian Rings. / Zilberbord, I. M.

In: Journal of Mathematical Sciences, Vol. 219, No. 4, 2016, p. 519-522.

Research output: Contribution to journalArticlepeer-review

Harvard

Zilberbord, IM 2016, 'Stacked Decomposition Theorem for Modules Over Serial Left Noetherian Rings', Journal of Mathematical Sciences, vol. 219, no. 4, pp. 519-522.

APA

Zilberbord, I. M. (2016). Stacked Decomposition Theorem for Modules Over Serial Left Noetherian Rings. Journal of Mathematical Sciences, 219(4), 519-522.

Vancouver

Author

Zilberbord, I. M. / Stacked Decomposition Theorem for Modules Over Serial Left Noetherian Rings. In: Journal of Mathematical Sciences. 2016 ; Vol. 219, No. 4. pp. 519-522.

BibTeX

@article{d795f5abc19749cb93c7a480df446ce0,
title = "Stacked Decomposition Theorem for Modules Over Serial Left Noetherian Rings",
abstract = "A theorem on the stacked decomposition for infinitely generated projective left modules over serial left noetherian rings is proved.",
author = "Zilberbord, {I. M.}",
note = "Zilberbord, I.M. Stacked Decomposition Theorem for Modules Over Serial Left Noetherian Rings. J Math Sci 219, 519–522 (2016). https://doi.org/10.1007/s10958-016-3124-3",
year = "2016",
language = "English",
volume = "219",
pages = "519--522",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "4",

}

RIS

TY - JOUR

T1 - Stacked Decomposition Theorem for Modules Over Serial Left Noetherian Rings

AU - Zilberbord, I. M.

N1 - Zilberbord, I.M. Stacked Decomposition Theorem for Modules Over Serial Left Noetherian Rings. J Math Sci 219, 519–522 (2016). https://doi.org/10.1007/s10958-016-3124-3

PY - 2016

Y1 - 2016

N2 - A theorem on the stacked decomposition for infinitely generated projective left modules over serial left noetherian rings is proved.

AB - A theorem on the stacked decomposition for infinitely generated projective left modules over serial left noetherian rings is proved.

UR - https://link.springer.com/article/10.1007/s10958-016-3124-3

M3 - Article

VL - 219

SP - 519

EP - 522

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 4

ER -

ID: 7606414