Research output: Contribution to journal › Article › peer-review
Stability of bases and frames of reproducing kernels in model spaces. / Baranov, Anton.
In: Annales de l'Institut Fourier, Vol. 55, No. 7, 01.01.2005.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Stability of bases and frames of reproducing kernels in model spaces
AU - Baranov, Anton
PY - 2005/1/1
Y1 - 2005/1/1
N2 - We study the bases and frames of reproducing kernels in the model subspaces K⊖ 2 = H2 ⊖H2 of the Hardy class H2 in the upper half-plane. The main problem under consideration is the stability of a basis of reproducing kernels kλn (z) = (1-⊖(λn)⊖(z))/(z - λn) under "small" perturbations of the points λn. We propose an approach to this problem based on the rerently obtained estimates of derivatives in the spaces K⊖ 2 and produce estimates of admissible perturbations generalizing certain results of W.S. Cohn and E. Fricain.
AB - We study the bases and frames of reproducing kernels in the model subspaces K⊖ 2 = H2 ⊖H2 of the Hardy class H2 in the upper half-plane. The main problem under consideration is the stability of a basis of reproducing kernels kλn (z) = (1-⊖(λn)⊖(z))/(z - λn) under "small" perturbations of the points λn. We propose an approach to this problem based on the rerently obtained estimates of derivatives in the spaces K⊖ 2 and produce estimates of admissible perturbations generalizing certain results of W.S. Cohn and E. Fricain.
KW - Frame
KW - Inner function
KW - Reproducing kernel
KW - Riesz basis
KW - Shift-coinvariant subspace
KW - Stability
UR - http://www.scopus.com/inward/record.url?scp=33751505305&partnerID=8YFLogxK
U2 - 10.5802/aif.2165
DO - 10.5802/aif.2165
M3 - Article
AN - SCOPUS:33751505305
VL - 55
JO - Annales de l'Institut Fourier
JF - Annales de l'Institut Fourier
SN - 0373-0956
IS - 7
ER -
ID: 32721663