Standard

Spatial Variability of the Frontal Zones and its Eddies Generated in the Norwegian Sea. / Травкин, Владимир Станиславович; Ахтямова, Авелина Фидарисовна.

In: Russian Journal of Earth Sciences, Vol. 23, No. 3, ES3004, 17.07.2023.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

BibTeX

@article{1d7789bcd28d48aaafd9595231215a15,
title = "Spatial Variability of the Frontal Zones and its Eddies Generated in the Norwegian Sea",
abstract = " The Norwegian Sea is the meeting place of warm and salty Atlantic waters with cold and fresh Arctic waters. The thermal and haline frontal zones (FZs) formed as a result of this interaction are areas of increased horizontal gradients of physical, chemical, and biological parameters, and have a significant impact on regional circulation. Many mesoscale eddies are generated in the FZs which are actively involved in the eddy dynamics of the Norwegian Sea. The aim of this work is to analyze the spatio-temporal variability of the vertical structure of FZs in the Norwegian Sea, as well as the eddies that form within their boundaries. The work uses data from the oceanic reanalysis GLORYS12V1, as well as the Atlas of Mesoscale Eddies “Mesoscale Eddy Trajectory Atlas product META 3.2 DT” for the period 1993–2021. We analyze the average depth and thickness of FZs, the vertical distribution of their thermohaline gradients and areas. The work examines the seasonal and interannual variability of the volumes of thermal and haline FZs, the seasonal and interannual variability of mesoscale eddies, their spatial distribution, trajectories, and main parameters. In some areas, deepening of FZs has been established, and their thickness can reach 900 m. The presence of significant haline gradients in the layer of 250–750 m has been found, while thermal FZs can be traced vertically up to 1000 m compared with haline FZs. In some FZs, the interannual variability may exceed the seasonal one. The greatest variability of haline FZs can be traced in the autumn period, and the smallest – in the winter–spring. It is noticeable in the summer period that thermal FZs weaken. Eddies can leave the boundaries of the FZs and move away from the place of origin for hundreds of kilometers. The number and lifetime of cyclones exceed similar estimates for anticyclones, while anticyclones travel long distances compared to cyclones.",
keywords = "Frontal zones, Mesoscale eddies, Norwegian sea, GLORYS12V1, META",
author = "Травкин, {Владимир Станиславович} and Ахтямова, {Авелина Фидарисовна}",
year = "2023",
month = jul,
day = "17",
doi = "10.2205/2023es000844",
language = "English",
volume = "23",
journal = "Russian Journal of Earth Sciences",
issn = "1681-1178",
publisher = "American Geophysical Union",
number = "3",

}

RIS

TY - JOUR

T1 - Spatial Variability of the Frontal Zones and its Eddies Generated in the Norwegian Sea

AU - Травкин, Владимир Станиславович

AU - Ахтямова, Авелина Фидарисовна

PY - 2023/7/17

Y1 - 2023/7/17

N2 - The Norwegian Sea is the meeting place of warm and salty Atlantic waters with cold and fresh Arctic waters. The thermal and haline frontal zones (FZs) formed as a result of this interaction are areas of increased horizontal gradients of physical, chemical, and biological parameters, and have a significant impact on regional circulation. Many mesoscale eddies are generated in the FZs which are actively involved in the eddy dynamics of the Norwegian Sea. The aim of this work is to analyze the spatio-temporal variability of the vertical structure of FZs in the Norwegian Sea, as well as the eddies that form within their boundaries. The work uses data from the oceanic reanalysis GLORYS12V1, as well as the Atlas of Mesoscale Eddies “Mesoscale Eddy Trajectory Atlas product META 3.2 DT” for the period 1993–2021. We analyze the average depth and thickness of FZs, the vertical distribution of their thermohaline gradients and areas. The work examines the seasonal and interannual variability of the volumes of thermal and haline FZs, the seasonal and interannual variability of mesoscale eddies, their spatial distribution, trajectories, and main parameters. In some areas, deepening of FZs has been established, and their thickness can reach 900 m. The presence of significant haline gradients in the layer of 250–750 m has been found, while thermal FZs can be traced vertically up to 1000 m compared with haline FZs. In some FZs, the interannual variability may exceed the seasonal one. The greatest variability of haline FZs can be traced in the autumn period, and the smallest – in the winter–spring. It is noticeable in the summer period that thermal FZs weaken. Eddies can leave the boundaries of the FZs and move away from the place of origin for hundreds of kilometers. The number and lifetime of cyclones exceed similar estimates for anticyclones, while anticyclones travel long distances compared to cyclones.

AB - The Norwegian Sea is the meeting place of warm and salty Atlantic waters with cold and fresh Arctic waters. The thermal and haline frontal zones (FZs) formed as a result of this interaction are areas of increased horizontal gradients of physical, chemical, and biological parameters, and have a significant impact on regional circulation. Many mesoscale eddies are generated in the FZs which are actively involved in the eddy dynamics of the Norwegian Sea. The aim of this work is to analyze the spatio-temporal variability of the vertical structure of FZs in the Norwegian Sea, as well as the eddies that form within their boundaries. The work uses data from the oceanic reanalysis GLORYS12V1, as well as the Atlas of Mesoscale Eddies “Mesoscale Eddy Trajectory Atlas product META 3.2 DT” for the period 1993–2021. We analyze the average depth and thickness of FZs, the vertical distribution of their thermohaline gradients and areas. The work examines the seasonal and interannual variability of the volumes of thermal and haline FZs, the seasonal and interannual variability of mesoscale eddies, their spatial distribution, trajectories, and main parameters. In some areas, deepening of FZs has been established, and their thickness can reach 900 m. The presence of significant haline gradients in the layer of 250–750 m has been found, while thermal FZs can be traced vertically up to 1000 m compared with haline FZs. In some FZs, the interannual variability may exceed the seasonal one. The greatest variability of haline FZs can be traced in the autumn period, and the smallest – in the winter–spring. It is noticeable in the summer period that thermal FZs weaken. Eddies can leave the boundaries of the FZs and move away from the place of origin for hundreds of kilometers. The number and lifetime of cyclones exceed similar estimates for anticyclones, while anticyclones travel long distances compared to cyclones.

KW - Frontal zones

KW - Mesoscale eddies

KW - Norwegian sea

KW - GLORYS12V1

KW - META

UR - https://www.mendeley.com/catalogue/a20f9691-6db2-349b-b40f-322a46e2aafb/

U2 - 10.2205/2023es000844

DO - 10.2205/2023es000844

M3 - Article

VL - 23

JO - Russian Journal of Earth Sciences

JF - Russian Journal of Earth Sciences

SN - 1681-1178

IS - 3

M1 - ES3004

ER -

ID: 108179160