DOI

  • Pascal Büttner
  • Dirk Döhler
  • Sofia Korenko
  • Sebastian Möhrlein
  • Sebastian Bochmann
  • Nicolas Vogel
  • Ignacio Mínguez-Bacho
  • Julien Bachmann

TiO2 nanotubes generated by anodization of metallic titanium sputter-coated on indium tin oxide (ITO) substrates are used as a conductive scaffold for all solid-state Sb2S3-sensitized extremely thin absorber (ETA) solar cells. A blocking layer of TiO2 placed between Ti and ITO in combination with optimized Ti deposition and anodization conditions enables the formation of crack-free layers of straight, cylindrical TiO2 nanotubes of tunable length and diameter. ALD (atomic layer deposition) is subsequently used to coat this substrate conformally with a highly pure Sb2S3 light absorber layer under an inert atmosphere. The high absorption coefficient of Sb2S3 as compared to molecular dyes allows for the utilization of very short nanotubes, which facilitates the infiltration of the organic hole transport material and formation of a p-i-n heterojunction in an interdigitated and tunable geometry. We investigate the influence of nanotube length and of the absorber thickness to enhance the photocurrent value to twice that of planar reference structures.

Original languageEnglish
Pages (from-to)28225-28231
Number of pages7
JournalRSC Advances
Volume10
Issue number47
DOIs
StatePublished - 30 Jul 2020

    Research areas

  • ATOMIC LAYER DEPOSITION, TIO2 NANOTUBE ARRAYS, ABSORBER, SULFIDE

    Scopus subject areas

  • Chemical Engineering(all)
  • Chemistry(all)

ID: 70652114