Research output: Contribution to journal › Article › peer-review
Solid Solutions of Lindbergite–Glushinskite Series: Synthesis, Ionic Substitutions, Phase Transformation and Crystal Morphology. / Korneev, Anatolii V. ; Izatulina , Alina R.; Kuz’mina, Mariya A. ; Frank-Kamenetskaya , Olga V. .
In: International Journal of Molecular Sciences, Vol. 23, No. 23, 14734, 2022.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Solid Solutions of Lindbergite–Glushinskite Series: Synthesis, Ionic Substitutions, Phase Transformation and Crystal Morphology
AU - Korneev, Anatolii V.
AU - Izatulina , Alina R.
AU - Kuz’mina, Mariya A.
AU - Frank-Kamenetskaya , Olga V.
N1 - Korneev, A.V.; Izatulina, A.R.; Kuz’mina, M.A.; Frank-Kamenetskaya, O.V. Solid Solutions of Lindbergite–Glushinskite Series: Synthesis, Ionic Substitutions, Phase Transformation and Crystal Morphology. Int. J. Mol. Sci. 2022, 23, 14734. https://doi.org/10.3390/ijms232314734
PY - 2022
Y1 - 2022
N2 - o clarify the crystal chemical features of natural and synthetic oxalates Me2+(C2O4)∙2H2O (Me2+ = Fe, Mn, Mg, Zn), including minerals of the humboldtine group, solid solutions of lindbergite Mn(C2O4)∙2H2O–glushinskite Mg(C2O4)∙2H2O were precipitated under various conditions, close to those characteristic of mineralization in biofilms: at the stoichiometric ratios ((Mn + Mg)/C2O4 = 1) and non-stochiometric ratios ((Mn + Mg)/C2O4 < 1), in the presence and absence of citrate ions. Investigation of precipitates was carried out by powder X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Thermodynamic modelling was performed in order to evaluate the lindbergite–glushinskite equilibrium. It was shown that glushinskite belongs to the orthorhombic β-modification (sp. Gr. Fddd), while lindbergite has a monoclinic α-modification (sp. gr. C2/c). Mg ions incorporate lindbergite in much higher quantities than Mn ions incorporate glushinskite; moreover, Mn glushinskites are characterized by violations of long-range order in their crystal structure. Lindbergite–glushinskite transition occurs abruptly and can be classified as a first-order isodimorphic transition. The Me2+/C2O4 ratio and the presence of citric acid in the solution affect the isomorphic capacity of lindbergite and glushinskite, the width of the transition and the equilibrium Mg/Mn ratio. The transition is accompanied by continuous morphological changes in crystals and crystal intergrowths. Given the obtained results, it is necessary to take into account in biotechnologies aimed at the bioremediation/bioleaching of metals from media containing mixtures of cations (Mg, Mn, Fe, Zn).
AB - o clarify the crystal chemical features of natural and synthetic oxalates Me2+(C2O4)∙2H2O (Me2+ = Fe, Mn, Mg, Zn), including minerals of the humboldtine group, solid solutions of lindbergite Mn(C2O4)∙2H2O–glushinskite Mg(C2O4)∙2H2O were precipitated under various conditions, close to those characteristic of mineralization in biofilms: at the stoichiometric ratios ((Mn + Mg)/C2O4 = 1) and non-stochiometric ratios ((Mn + Mg)/C2O4 < 1), in the presence and absence of citrate ions. Investigation of precipitates was carried out by powder X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Thermodynamic modelling was performed in order to evaluate the lindbergite–glushinskite equilibrium. It was shown that glushinskite belongs to the orthorhombic β-modification (sp. Gr. Fddd), while lindbergite has a monoclinic α-modification (sp. gr. C2/c). Mg ions incorporate lindbergite in much higher quantities than Mn ions incorporate glushinskite; moreover, Mn glushinskites are characterized by violations of long-range order in their crystal structure. Lindbergite–glushinskite transition occurs abruptly and can be classified as a first-order isodimorphic transition. The Me2+/C2O4 ratio and the presence of citric acid in the solution affect the isomorphic capacity of lindbergite and glushinskite, the width of the transition and the equilibrium Mg/Mn ratio. The transition is accompanied by continuous morphological changes in crystals and crystal intergrowths. Given the obtained results, it is necessary to take into account in biotechnologies aimed at the bioremediation/bioleaching of metals from media containing mixtures of cations (Mg, Mn, Fe, Zn).
KW - lindbergite
KW - glushinskite
KW - Humboldtine
KW - X-ray diffraction
KW - solid solutions
KW - ionic substitutions
KW - x-ray powder diffraction
KW - scanning electron microscopy
KW - EDX spectroscopy
UR - https://www.mdpi.com/1422-0067/23/23/14734
M3 - Article
VL - 23
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
SN - 1422-0067
IS - 23
M1 - 14734
ER -
ID: 102172279