Research output: Contribution to journal › Article › peer-review
Sobolev inequalities for fractional Neumann Laplacians on half spaces. / Musina, Roberta; Назаров, Александр Ильич.
In: Advances in Calculus of Variations, 11.10.2018.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Sobolev inequalities for fractional Neumann Laplacians on half spaces
AU - Musina, Roberta
AU - Назаров, Александр Ильич
PY - 2018/10/11
Y1 - 2018/10/11
N2 - We consider different fractional Neumann Laplacians of order s ∈ (0, 1) {s\in(0,1)} on domains Ω ω n {\Omega\subset\mathbb{R}^{n}}, namely, the restricted Neumann Laplacian (- Δ Ω N) R s {{(-\Delta-{\Omega}^{N})^{s}-{\mathrm{R}}}}, the semirestricted Neumann Laplacian (- Δ Ω N) Sr s {{(-\Delta-{\Omega}^{N})^{s}-{\mathrm{Sr}}}} and the spectral Neumann Laplacian (- Δ Ω N) Sp s {{(-\Delta-{\Omega}^{N})^{s}-{\mathrm{Sp}}}}. In particular, we are interested in the attainability of Sobolev constants for these operators when Ω is a half-space.
AB - We consider different fractional Neumann Laplacians of order s ∈ (0, 1) {s\in(0,1)} on domains Ω ω n {\Omega\subset\mathbb{R}^{n}}, namely, the restricted Neumann Laplacian (- Δ Ω N) R s {{(-\Delta-{\Omega}^{N})^{s}-{\mathrm{R}}}}, the semirestricted Neumann Laplacian (- Δ Ω N) Sr s {{(-\Delta-{\Omega}^{N})^{s}-{\mathrm{Sr}}}} and the spectral Neumann Laplacian (- Δ Ω N) Sp s {{(-\Delta-{\Omega}^{N})^{s}-{\mathrm{Sp}}}}. In particular, we are interested in the attainability of Sobolev constants for these operators when Ω is a half-space.
KW - Fractional Laplace operators
KW - Sobolev inequality
KW - lack of compactness
UR - http://www.scopus.com/inward/record.url?scp=85054988107&partnerID=8YFLogxK
UR - http://www.mendeley.com/research/sobolev-inequalities-fractional-neumann-laplacians-half-spaces
U2 - 10.1515/acv-2018-0020
DO - 10.1515/acv-2018-0020
M3 - Article
JO - Advances in Calculus of Variations
JF - Advances in Calculus of Variations
SN - 1864-8258
ER -
ID: 34947434