Standard

Sobolev inequalities for fractional Neumann Laplacians on half spaces. / Musina, Roberta; Назаров, Александр Ильич.

In: Advances in Calculus of Variations, 11.10.2018.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

BibTeX

@article{8328700fc1c84d3aa182e05e1d695a54,
title = "Sobolev inequalities for fractional Neumann Laplacians on half spaces",
abstract = "We consider different fractional Neumann Laplacians of order s ∈ (0, 1) {s\in(0,1)} on domains Ω ω n {\Omega\subset\mathbb{R}^{n}}, namely, the restricted Neumann Laplacian (- Δ Ω N) R s {{(-\Delta-{\Omega}^{N})^{s}-{\mathrm{R}}}}, the semirestricted Neumann Laplacian (- Δ Ω N) Sr s {{(-\Delta-{\Omega}^{N})^{s}-{\mathrm{Sr}}}} and the spectral Neumann Laplacian (- Δ Ω N) Sp s {{(-\Delta-{\Omega}^{N})^{s}-{\mathrm{Sp}}}}. In particular, we are interested in the attainability of Sobolev constants for these operators when Ω is a half-space.",
keywords = "Fractional Laplace operators, Sobolev inequality, lack of compactness",
author = "Roberta Musina and Назаров, {Александр Ильич}",
year = "2018",
month = oct,
day = "11",
doi = "10.1515/acv-2018-0020",
language = "English",
journal = "Advances in Calculus of Variations",
issn = "1864-8258",
publisher = "De Gruyter",

}

RIS

TY - JOUR

T1 - Sobolev inequalities for fractional Neumann Laplacians on half spaces

AU - Musina, Roberta

AU - Назаров, Александр Ильич

PY - 2018/10/11

Y1 - 2018/10/11

N2 - We consider different fractional Neumann Laplacians of order s ∈ (0, 1) {s\in(0,1)} on domains Ω ω n {\Omega\subset\mathbb{R}^{n}}, namely, the restricted Neumann Laplacian (- Δ Ω N) R s {{(-\Delta-{\Omega}^{N})^{s}-{\mathrm{R}}}}, the semirestricted Neumann Laplacian (- Δ Ω N) Sr s {{(-\Delta-{\Omega}^{N})^{s}-{\mathrm{Sr}}}} and the spectral Neumann Laplacian (- Δ Ω N) Sp s {{(-\Delta-{\Omega}^{N})^{s}-{\mathrm{Sp}}}}. In particular, we are interested in the attainability of Sobolev constants for these operators when Ω is a half-space.

AB - We consider different fractional Neumann Laplacians of order s ∈ (0, 1) {s\in(0,1)} on domains Ω ω n {\Omega\subset\mathbb{R}^{n}}, namely, the restricted Neumann Laplacian (- Δ Ω N) R s {{(-\Delta-{\Omega}^{N})^{s}-{\mathrm{R}}}}, the semirestricted Neumann Laplacian (- Δ Ω N) Sr s {{(-\Delta-{\Omega}^{N})^{s}-{\mathrm{Sr}}}} and the spectral Neumann Laplacian (- Δ Ω N) Sp s {{(-\Delta-{\Omega}^{N})^{s}-{\mathrm{Sp}}}}. In particular, we are interested in the attainability of Sobolev constants for these operators when Ω is a half-space.

KW - Fractional Laplace operators

KW - Sobolev inequality

KW - lack of compactness

UR - http://www.scopus.com/inward/record.url?scp=85054988107&partnerID=8YFLogxK

UR - http://www.mendeley.com/research/sobolev-inequalities-fractional-neumann-laplacians-half-spaces

U2 - 10.1515/acv-2018-0020

DO - 10.1515/acv-2018-0020

M3 - Article

JO - Advances in Calculus of Variations

JF - Advances in Calculus of Variations

SN - 1864-8258

ER -

ID: 34947434