Research output: Contribution to journal › Article › peer-review
Single vs. mutliparametric luminescence thermometry: the case of Eu3+-doped Ba3(VO4)2 nanophosphors. / Kolesnikov, Ilya E.; Mamonova, Daria V.; Kurochkin, Mikhail A.; Khodasevich, Mikhail A.; Medvedev, Vassily A.; Kolesnikov, Evgenii Yu.; Manshina, Alina A.
In: Journal of Materials Chemistry C, Vol. 11, No. 42, 01.11.2023, p. 14814-14825.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Single vs. mutliparametric luminescence thermometry: the case of Eu3+-doped Ba3(VO4)2 nanophosphors
AU - Kolesnikov, Ilya E.
AU - Mamonova, Daria V.
AU - Kurochkin, Mikhail A.
AU - Khodasevich, Mikhail A.
AU - Medvedev, Vassily A.
AU - Kolesnikov, Evgenii Yu.
AU - Manshina, Alina A.
PY - 2023/11/1
Y1 - 2023/11/1
N2 - Luminescence thermometry could provide remote temperature sensing with high spatial and temporal resolution. To date, a lot of effort has been focused on maximizing the performances of these thermal sensors. One of the promising strategies is using several temperature-sensitive parameters to provide more reliable and accurate thermal sensing. Here, we compare luminescence thermometry based on single parameter monitoring, namely LIR, spectral line position and bandwidth, and multiparametric sensing based on principal component analysis. All thermometry was performed using excitation spectra of Eu3+-doped Ba3(VO4)2 nanocrystalline powder. The results obtained testify the advantage of multiparametric thermometry over a classical single parameter one, which can be used for further enhancement of the thermometric performances of luminescence thermometers through appropriate treatment of the collected data for calibration.
AB - Luminescence thermometry could provide remote temperature sensing with high spatial and temporal resolution. To date, a lot of effort has been focused on maximizing the performances of these thermal sensors. One of the promising strategies is using several temperature-sensitive parameters to provide more reliable and accurate thermal sensing. Here, we compare luminescence thermometry based on single parameter monitoring, namely LIR, spectral line position and bandwidth, and multiparametric sensing based on principal component analysis. All thermometry was performed using excitation spectra of Eu3+-doped Ba3(VO4)2 nanocrystalline powder. The results obtained testify the advantage of multiparametric thermometry over a classical single parameter one, which can be used for further enhancement of the thermometric performances of luminescence thermometers through appropriate treatment of the collected data for calibration.
UR - https://www.mendeley.com/catalogue/2dc6cee3-d951-3148-8002-db25e9da8fcc/
U2 - 10.1039/D3TC03072E
DO - 10.1039/D3TC03072E
M3 - Article
VL - 11
SP - 14814
EP - 14825
JO - Journal of Materials Chemistry C
JF - Journal of Materials Chemistry C
SN - 2050-7526
IS - 42
ER -
ID: 113797235