Standard

Simulation of pulsed dielectric barrier discharge xenon excimer lamp. / Bogdanov, E. A.; Kudryavtsev, A. A.; Arslanbekov, R. R.; Kolobov, V. I.

In: Journal of Physics D: Applied Physics, Vol. 37, No. 21, 07.11.2004, p. 2987-2995.

Research output: Contribution to journalArticlepeer-review

Harvard

Bogdanov, EA, Kudryavtsev, AA, Arslanbekov, RR & Kolobov, VI 2004, 'Simulation of pulsed dielectric barrier discharge xenon excimer lamp', Journal of Physics D: Applied Physics, vol. 37, no. 21, pp. 2987-2995. https://doi.org/10.1088/0022-3727/37/21/008

APA

Bogdanov, E. A., Kudryavtsev, A. A., Arslanbekov, R. R., & Kolobov, V. I. (2004). Simulation of pulsed dielectric barrier discharge xenon excimer lamp. Journal of Physics D: Applied Physics, 37(21), 2987-2995. https://doi.org/10.1088/0022-3727/37/21/008

Vancouver

Bogdanov EA, Kudryavtsev AA, Arslanbekov RR, Kolobov VI. Simulation of pulsed dielectric barrier discharge xenon excimer lamp. Journal of Physics D: Applied Physics. 2004 Nov 7;37(21):2987-2995. https://doi.org/10.1088/0022-3727/37/21/008

Author

Bogdanov, E. A. ; Kudryavtsev, A. A. ; Arslanbekov, R. R. ; Kolobov, V. I. / Simulation of pulsed dielectric barrier discharge xenon excimer lamp. In: Journal of Physics D: Applied Physics. 2004 ; Vol. 37, No. 21. pp. 2987-2995.

BibTeX

@article{4a07083b79af4a759d14e96383cc82cf,
title = "Simulation of pulsed dielectric barrier discharge xenon excimer lamp",
abstract = "Recently, it has been shown that the efficiency of excimer lamps can be drastically increased in a pulsed regime. A one-dimensional simulation of pulsed excimer lamps has been performed by Carman and Mildren (2003 J. Phys. D: Appl. Phys. 36 19) (C&M). However, some computational results of the work of C&M are questionable and need to be revisited. In this paper, a dielectric barrier discharge (DBD) in xenon has been simulated for operating conditions similar to those of C&M to better understand plasma dynamics in a pulsed regime. Our simulation results differ considerably from the computational results of C&M. Although these differences do riot affect profoundly the plasma macro parameters measured in the C&M experiments, they offer a better understanding of plasma dynamics in pulsed DBDs and form a solid foundation for computational optimization of excimer lamps. It was found that the dynamics of breakdown and the current pulse depend significantly on the initial densities of species after a previous pulse, and so it is important to accurately simulate the plasma evolution in both the afterglow and active stages. It seems possible to modify the power deposition in the plasma by varying external discharge parameters such as the amplitude and the rise time of the applied voltage, and to modify the plasma composition by changing the pulse repetition rate and plasma decay in the afterglow stage.",
author = "Bogdanov, {E. A.} and Kudryavtsev, {A. A.} and Arslanbekov, {R. R.} and Kolobov, {V. I.}",
year = "2004",
month = nov,
day = "7",
doi = "10.1088/0022-3727/37/21/008",
language = "English",
volume = "37",
pages = "2987--2995",
journal = "Journal Physics D: Applied Physics",
issn = "0022-3727",
publisher = "IOP Publishing Ltd.",
number = "21",

}

RIS

TY - JOUR

T1 - Simulation of pulsed dielectric barrier discharge xenon excimer lamp

AU - Bogdanov, E. A.

AU - Kudryavtsev, A. A.

AU - Arslanbekov, R. R.

AU - Kolobov, V. I.

PY - 2004/11/7

Y1 - 2004/11/7

N2 - Recently, it has been shown that the efficiency of excimer lamps can be drastically increased in a pulsed regime. A one-dimensional simulation of pulsed excimer lamps has been performed by Carman and Mildren (2003 J. Phys. D: Appl. Phys. 36 19) (C&M). However, some computational results of the work of C&M are questionable and need to be revisited. In this paper, a dielectric barrier discharge (DBD) in xenon has been simulated for operating conditions similar to those of C&M to better understand plasma dynamics in a pulsed regime. Our simulation results differ considerably from the computational results of C&M. Although these differences do riot affect profoundly the plasma macro parameters measured in the C&M experiments, they offer a better understanding of plasma dynamics in pulsed DBDs and form a solid foundation for computational optimization of excimer lamps. It was found that the dynamics of breakdown and the current pulse depend significantly on the initial densities of species after a previous pulse, and so it is important to accurately simulate the plasma evolution in both the afterglow and active stages. It seems possible to modify the power deposition in the plasma by varying external discharge parameters such as the amplitude and the rise time of the applied voltage, and to modify the plasma composition by changing the pulse repetition rate and plasma decay in the afterglow stage.

AB - Recently, it has been shown that the efficiency of excimer lamps can be drastically increased in a pulsed regime. A one-dimensional simulation of pulsed excimer lamps has been performed by Carman and Mildren (2003 J. Phys. D: Appl. Phys. 36 19) (C&M). However, some computational results of the work of C&M are questionable and need to be revisited. In this paper, a dielectric barrier discharge (DBD) in xenon has been simulated for operating conditions similar to those of C&M to better understand plasma dynamics in a pulsed regime. Our simulation results differ considerably from the computational results of C&M. Although these differences do riot affect profoundly the plasma macro parameters measured in the C&M experiments, they offer a better understanding of plasma dynamics in pulsed DBDs and form a solid foundation for computational optimization of excimer lamps. It was found that the dynamics of breakdown and the current pulse depend significantly on the initial densities of species after a previous pulse, and so it is important to accurately simulate the plasma evolution in both the afterglow and active stages. It seems possible to modify the power deposition in the plasma by varying external discharge parameters such as the amplitude and the rise time of the applied voltage, and to modify the plasma composition by changing the pulse repetition rate and plasma decay in the afterglow stage.

UR - http://www.scopus.com/inward/record.url?scp=9144227618&partnerID=8YFLogxK

U2 - 10.1088/0022-3727/37/21/008

DO - 10.1088/0022-3727/37/21/008

M3 - Article

AN - SCOPUS:9144227618

VL - 37

SP - 2987

EP - 2995

JO - Journal Physics D: Applied Physics

JF - Journal Physics D: Applied Physics

SN - 0022-3727

IS - 21

ER -

ID: 42901888