Standard

Silicon Nanowire-Based Room-Temperature Multi-environment Ammonia Detection. / Kondratev, Valeriy M.; Morozov, Ivan A.; Vyacheslavova, Ekaterina A.; Kirilenko, Demid A.; Kuznetsov, Alexey; Kadinskaya, Svetlana A.; Nalimova, Svetlana S.; Moshnikov, Vyacheslav A.; Gudovskikh, Alexander S.; Bolshakov, Alexey D.

In: ACS Applied Nano Materials, Vol. 5, No. 7, 22.07.2022, p. 9940-9949.

Research output: Contribution to journalArticlepeer-review

Harvard

Kondratev, VM, Morozov, IA, Vyacheslavova, EA, Kirilenko, DA, Kuznetsov, A, Kadinskaya, SA, Nalimova, SS, Moshnikov, VA, Gudovskikh, AS & Bolshakov, AD 2022, 'Silicon Nanowire-Based Room-Temperature Multi-environment Ammonia Detection', ACS Applied Nano Materials, vol. 5, no. 7, pp. 9940-9949. https://doi.org/10.1021/acsanm.2c02178

APA

Kondratev, V. M., Morozov, I. A., Vyacheslavova, E. A., Kirilenko, D. A., Kuznetsov, A., Kadinskaya, S. A., Nalimova, S. S., Moshnikov, V. A., Gudovskikh, A. S., & Bolshakov, A. D. (2022). Silicon Nanowire-Based Room-Temperature Multi-environment Ammonia Detection. ACS Applied Nano Materials, 5(7), 9940-9949. https://doi.org/10.1021/acsanm.2c02178

Vancouver

Kondratev VM, Morozov IA, Vyacheslavova EA, Kirilenko DA, Kuznetsov A, Kadinskaya SA et al. Silicon Nanowire-Based Room-Temperature Multi-environment Ammonia Detection. ACS Applied Nano Materials. 2022 Jul 22;5(7):9940-9949. https://doi.org/10.1021/acsanm.2c02178

Author

Kondratev, Valeriy M. ; Morozov, Ivan A. ; Vyacheslavova, Ekaterina A. ; Kirilenko, Demid A. ; Kuznetsov, Alexey ; Kadinskaya, Svetlana A. ; Nalimova, Svetlana S. ; Moshnikov, Vyacheslav A. ; Gudovskikh, Alexander S. ; Bolshakov, Alexey D. / Silicon Nanowire-Based Room-Temperature Multi-environment Ammonia Detection. In: ACS Applied Nano Materials. 2022 ; Vol. 5, No. 7. pp. 9940-9949.

BibTeX

@article{260ad5d9f59c474c9bc4ac7f5a7a757f,
title = "Silicon Nanowire-Based Room-Temperature Multi-environment Ammonia Detection",
abstract = "Nanowires represent numerous opportunities for nanoelectronics and sensorics, while metal contact fabrication makes the device development rather challenging. Here, we demonstrate that silicon (Si) nanowires deposited on interdigital metal contacts via simple drop casting exhibit an abrupt increase in conductivity upon exposure to ammonia vapors and aqueous solutions due to adsorption of the analyte species. To reduce the noise of the DC resistance measurements lacking ohmic conductivity, we exploit electronic impedance spectroscopy. The resistive response is found to be dependent on the ammonia content in vapor and liquid matter. The results demonstrate a detection limit of 4 μmol·L-1(80 ppb), a sensitivity of 0.2% μmol-1·l (0.01%·ppb-1), and applicability for the low-concentration detection of up to 400 μmol·L-1(8 ppm) ammonia in aqueous solutions both directly and indirectly with a response rate of up to 0.43%·s-1and a recovery rate of 0.31%·s-1and show selectivity to oxidizing species. Thus, we demonstrate that the use of semiconductor nanowires in adsorption sensorics does not require the fabrication of ohmic contacts and present a simple fabrication protocol perspective for the development of highly sensitive room-temperature multi-environment sensors.",
keywords = "adsorption sensor, ammonia, impedance spectroscopy, nanowire, plasma chemical etching, room temperature, silicon",
author = "Kondratev, {Valeriy M.} and Morozov, {Ivan A.} and Vyacheslavova, {Ekaterina A.} and Kirilenko, {Demid A.} and Alexey Kuznetsov and Kadinskaya, {Svetlana A.} and Nalimova, {Svetlana S.} and Moshnikov, {Vyacheslav A.} and Gudovskikh, {Alexander S.} and Bolshakov, {Alexey D.}",
note = "Publisher Copyright: {\textcopyright} 2022 American Chemical Society. All rights reserved.",
year = "2022",
month = jul,
day = "22",
doi = "10.1021/acsanm.2c02178",
language = "English",
volume = "5",
pages = "9940--9949",
journal = "ACS Applied Nano Materials",
issn = "2574-0970",
publisher = "American Chemical Society",
number = "7",

}

RIS

TY - JOUR

T1 - Silicon Nanowire-Based Room-Temperature Multi-environment Ammonia Detection

AU - Kondratev, Valeriy M.

AU - Morozov, Ivan A.

AU - Vyacheslavova, Ekaterina A.

AU - Kirilenko, Demid A.

AU - Kuznetsov, Alexey

AU - Kadinskaya, Svetlana A.

AU - Nalimova, Svetlana S.

AU - Moshnikov, Vyacheslav A.

AU - Gudovskikh, Alexander S.

AU - Bolshakov, Alexey D.

N1 - Publisher Copyright: © 2022 American Chemical Society. All rights reserved.

PY - 2022/7/22

Y1 - 2022/7/22

N2 - Nanowires represent numerous opportunities for nanoelectronics and sensorics, while metal contact fabrication makes the device development rather challenging. Here, we demonstrate that silicon (Si) nanowires deposited on interdigital metal contacts via simple drop casting exhibit an abrupt increase in conductivity upon exposure to ammonia vapors and aqueous solutions due to adsorption of the analyte species. To reduce the noise of the DC resistance measurements lacking ohmic conductivity, we exploit electronic impedance spectroscopy. The resistive response is found to be dependent on the ammonia content in vapor and liquid matter. The results demonstrate a detection limit of 4 μmol·L-1(80 ppb), a sensitivity of 0.2% μmol-1·l (0.01%·ppb-1), and applicability for the low-concentration detection of up to 400 μmol·L-1(8 ppm) ammonia in aqueous solutions both directly and indirectly with a response rate of up to 0.43%·s-1and a recovery rate of 0.31%·s-1and show selectivity to oxidizing species. Thus, we demonstrate that the use of semiconductor nanowires in adsorption sensorics does not require the fabrication of ohmic contacts and present a simple fabrication protocol perspective for the development of highly sensitive room-temperature multi-environment sensors.

AB - Nanowires represent numerous opportunities for nanoelectronics and sensorics, while metal contact fabrication makes the device development rather challenging. Here, we demonstrate that silicon (Si) nanowires deposited on interdigital metal contacts via simple drop casting exhibit an abrupt increase in conductivity upon exposure to ammonia vapors and aqueous solutions due to adsorption of the analyte species. To reduce the noise of the DC resistance measurements lacking ohmic conductivity, we exploit electronic impedance spectroscopy. The resistive response is found to be dependent on the ammonia content in vapor and liquid matter. The results demonstrate a detection limit of 4 μmol·L-1(80 ppb), a sensitivity of 0.2% μmol-1·l (0.01%·ppb-1), and applicability for the low-concentration detection of up to 400 μmol·L-1(8 ppm) ammonia in aqueous solutions both directly and indirectly with a response rate of up to 0.43%·s-1and a recovery rate of 0.31%·s-1and show selectivity to oxidizing species. Thus, we demonstrate that the use of semiconductor nanowires in adsorption sensorics does not require the fabrication of ohmic contacts and present a simple fabrication protocol perspective for the development of highly sensitive room-temperature multi-environment sensors.

KW - adsorption sensor

KW - ammonia

KW - impedance spectroscopy

KW - nanowire

KW - plasma chemical etching

KW - room temperature

KW - silicon

UR - http://www.scopus.com/inward/record.url?scp=85134531335&partnerID=8YFLogxK

U2 - 10.1021/acsanm.2c02178

DO - 10.1021/acsanm.2c02178

M3 - Article

AN - SCOPUS:85134531335

VL - 5

SP - 9940

EP - 9949

JO - ACS Applied Nano Materials

JF - ACS Applied Nano Materials

SN - 2574-0970

IS - 7

ER -

ID: 100347518