We study the multi-wavelength variability of the blazar Mrk 421 at minutes to days timescales using simultaneous data at γ-rays from Fermi, 0.7–20 keV energies from AstroSat, and optical and near infrared (NIR) wavelengths from ground based observatories. We compute the shortest variability timescales at all of the above wave bands and find its value to be ∼ 1.1 ks at the hard X-ray energies and increasingly longer at soft X-rays, optical and NIR wavelengths as well as at the GeV energies. We estimate the value of the magnetic field to be 0.5 Gauss and the maximum Lorentz factor of the emitting electrons ∼ 1.6 × 10 5 assuming that synchrotron radiation cooling drives the shortest variability timescale. Blazars vary at a large range of timescales often from minutes to years. These results, as obtained here from the very short end of the range of variability timescales of blazars, are a confirmation of the leptonic scenario and in particular the synchrotron origin of the X-ray emission from Mrk 421 by relativistic electrons of Lorentz factor as high as 10 5. This particular mode of confirmation has been possible using minutes to days timescale variability data obtained from AstroSat and simultaneous multi-wavelength observations.

Original languageEnglish
Article number80
Number of pages7
JournalJournal of Astrophysics and Astronomy
Volume42
Issue number2
DOIs
StatePublished - 1 Oct 2021

    Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

    Research areas

  • Active Galactic Nuclei (AGN), blazar, Mrk 421, multiwavelength, variability, 3C 279, SIGNATURES, RAY LIGHT CURVES, MODEL, RADIATION, GAMMA-RAY, SYNCHRO-COMPTON EMISSION, X-RAY, JETS, SPECTRAL ENERGY-DISTRIBUTION

ID: 84327751